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Abstract

We study the diffraction of SH-type elastic waves propagating
along with the plane interface between two dissimilar elastic half-
spaces. It is assumed that the contact between the half-spaces is
perfect except for a part of semi infinite extension where the contact
is loosely coupled. We use the Wiener-Hopf technique to obtain the
diffracted field in a closed form.



1 Introduction

The problem of diffraction of plane waves from different obstacles present in
the media of propagation has attracted considerable interest in the past fifty
years. Many workers have used the so-called Wiener-Hopf technique to tackle
such problems. The technique is based upon integral equation formulation
of the inherent problem together with the application of integral transforms,
Liouville’s theorem and complex integration. In 1952, D.S. Jones [6] proposed
a modification due to which the mixed boundary value problem arising from
diffraction of a plane wave from a plane could be directly solved without
reducing it to an integral equation. An excellent treatment of Jones’ method

can be found in the book by Noble [8].

Since then many authors have considered scattering and diffraction prob-
lems using the Wiener-Hopf technique De Hoop [5] carried out an elegant

study of diffraction of plane elastic waves by a semi-infinite plane.

Kazi [7], Asghay and Zaman [2)], [3] studied the diffraction of horizontally
polarized shear waves in a layered half-space by perfectly rigid or perfectly

soft half planes of infinite or finite extention.

In this paper, we consider two dissimilar half-spaces in contact at an
interface in such a way that part of the contact is perfect while at the re-
maining contact the two half-spaces are loosely coupled thus forming a crack
at the interface. We study diffraction of a horizontally polarized shear wave

travelling at the interface by this crack. We apply Jone’s method to reduce



the mixed boundary-value problem to the Wiener- Hopf equation and present

the solution of the diffraction problem in a closed form.

2 The Incident Wave

We consider two dissimilar half-spaces occupying y >0 and y < 0 having -
an interface at y = 0. The subscript 1 is used to denote quantities for the
upper half-space y > 0 while 2 is used for the lower half-space y < 0. Thus
Wiy Bi, pi  respectively denote the rigidity, velocity of the shear wave and the
density of the { medium i = 1,2. It is assumed that the two half-spaces
are in perfect contact for z < 0 and have a crack in between for z 2 0.
A horizontally polarized shear (SH-) wave is assumed to be travelling along

the interface and is incident on the crack. This incident wave satisfies the

equation
az’w; Bzw.- 2 62w.- .
W+W-8‘W,z_l’2 (1)
1 P -,
where s; = F = %— is the slowness of the SH-wave and w; is the

transverse velocity in the direction normal to the zy-plane in the ith medium.
Since the wave is travelling along the z-axis, an appropriate form of the
solution is w; = w;(y,t)e’*=, where k = k; + ik, is assumed. We take #&,

to be small but positive to give the desired behavior at infinity. Equation (1)
becomes

v, , 5 0w,
Ay

,i=1,2 (2)



Taking the Laplace transform in ¢ defined by

L{fw) = [ f®e=tdt = F(a), 3)

we can employ the continuity of the displacement across y = 0.

We may write the solution in the form

(4)

Wlinc = Ae-(a§a2+k2)1/2” v'eikz’ y>0
Wzinc = Aet(odad+k2)1/2y eikz, y<0 ’

where
Wire s
The continuity of the shear stress o,, across y =0 would imply

—m(sfad + 1) = (sfa? + BT ()

38 Diffraction Problem

Due to the presence of crack at y = 0,z > 0, a diffracted wave will be
produced which we would again denote by w;. However, to avoid confusion
the incident displacement field will be henceforth denoted by wi"¢. We write
the total displacement w! as

t __ .inc .
w, = w;  + w.

The diffracted wave is to satisfy the same wave equation (1). The boundary

conditions to be satisfied are

(a) At y=0, —-oo<z<0

= vy } 6(s)
a
M= 5



(b) At y=0*, =z>0.

N
At’yaO", z20 : |
- "

In addition, certain edge conditions are assumed in order to ensure unique-

ness of the solution (see Noble [8] for details).

4 'Transformed Problem

We define the following double range and half range Laplace transforms in

)= [ fa)erda,

(7a)
oo = [ @) da,

(Tb)
)= [ fle)emdz.

(Te)

Clearly,

fo) = Fo) + (). | (®)

If p=o+ir and f(z) = O(e**) as z — oo then f.(p) is analytic
in the right half plane ¢ > a. If f(z) = O(e*) as £ — —oc0 then f_(p)
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is analytic in the left half plane o < b. Combining these we find that f(p)

is analytic in the strip a <o < b.

Applying the Laplace transform in time and double range Laplace trans-

form in =z, the wave equation transforms into

8;3]": +(P-a?sHWi=0 i=1,2
(9)
(a) At y=0
W1_ = Wz-
Wi = mW_ (8)
Wl = W/ inc . -AS'?"':""F)”’
(b) v;: ";.:"M A(.z:z.;kz)l/: (Qb)
24 = Wt =
Here / denotes derivative with respect to y.
5 The Wiener-Hopf Equation
The solution of (9) may be written as
Wl(p1y,a) = Ele—'"v y ¥ > 0 (10)
Wa(p,y,a) = Eze™ | y <0
where 7; = (a?s? —p*)'/?,i=1,2
Eliminating the constants E; and E,,
Wi(pao a) = —-LW'(p,O a) ( )
11
Wz(p,o a) -LWQ(p,O a)

Using the decomposition (8), we put (11) in the form



Way + Wie = —2(W, + W), } -

Wap + W = 2(Wj, + Wy)
Using the transformed boundary conditions, the latter of the above pair of

equations (12) can be written as
Wie + W, W TR N U7 Ry T R
Wiy + Wil) + (Way = Wiy ) = — |22 W], + 2 WY,
7 LH2 Ha
putting value of W;, + W,_ from the first equation in (12), we have

(Way = Why) = ;f’ly_z [Wl'+ + Wx’-] + ;'3‘1' [W,’+ + W’-]

M+ W22 (i i
—_—— W+ W 13
HaM7a A ] ( -)
Writing
K2N17a
L(p,a) = ———F"— 14
(P, e) mm + pavs (14)
and v
Vi = Wy — Wiy, - (19)

we can now write (13) with the aid of 9(b) as

A(sla? + k’)‘/ 2
p—ik

L(p,a)V; = +Wi_. (16)

Equation (16) is in the form of the so-called Wiener-Hopf equation.

6 Solution in the Transformed Plane

The function L(p,a) can be factored as

L(p,e) = Ly(p,a)L-(p,q) (17)



(see Appendix 1), where Ly(p,a) are analytic in an apopropriate right
(left) half plane.

We can thus write equation (16) as

_ A(sia? + k)12 Wl'_
AT (S R AT (18)

L+(p1 Q)V+

The left hand side of (18) is analytic in the right uniformity while the
right hand side is analytic in the left half-plane except for the first term
which has a pole at p = ik. We decompose this term as(Appendix 2, B1)

(sg a? + kz)l/z _
L_(p,a)(p —ik) ~ Ri(p,a) + R_(p,@)

The equation (18) can thus be written as

A
/

Li(p0)V, — Ry(pr ) = AR (pya) + z—%:r) (19)

The left hand side is now analytic in the right hand half complex p-plane
while the right hand side is so in the left hand half-plane. Hence the equation
(19) holds in the common strip of analyticity. Thus both sides are analytic
continuation of each other and together define an entire function. By the
Liouville’s theorem this entire function is a constant. Following Georgiadis

et al. [4] we infer that this constant is zero. We therefore obtain
Wi = AR_(p,®)L-(p,a) (20)
where L_(p,a) and R_(p,e,) are as given in (A7) and (B1)..

We can therefore write

— _1_ irt 570\ A('s%az + k2)1/2L_(p, a)
b= W+ W) = = i — i) (21)




The solution in the transformed plane can then be written as

; _ A (e BL(pa)
Wi(p,y, @) = oI Gha " v>0 (22)
Similarly, we can find
; _ Ale? + B)L_(pa)
W2(P’y’a) - 72(? - ik)L..(lk, a) ey, ¥y < 0 (23)

7 The Diffracted Wave

We can now apply the inversion integral for the two sided Laplace transform

to equations (22) and (23) to obtain the diffracted field in the a-plane as

e MVdp , y>0 (24)

A e L(p,a)(sla? + K
Wi(z,y,0) = 27 ./i-oo 7(p — ik)L_(ik, a)

and

3 A e o0 L_(p, a)(s%oﬁ + k2)1/2)
Wa(z,y,e) = 2n1 Jicmoo  ya(p — ik)L_(ik, )

Pt Vdp |y <0. (25)

If we draw the closed contour lying in the left half plane then both the
integrals (24) and (25) have a pole at p = ik lying inside the contour. We
also have a branch point at p=as; for j =1,2 respectively in the case of
(24) and (25). Let us write Wj(z,y,p) = Wia(z,y,a) + Wja(z,y,a) where
Wja(z,y,a) denotes the contribution from the pole p = ik and WJ"Q(.'B, y,a)

denotes the contribution from the branch line integral for j =1,2.

The residue formula gives the pole contributions as

Win(z,y,a) = —Aie-@adsiiiy o g

Waa(z,y,0) = —Aeite@d+ 0y < g,



Comparing (26) with (4), we find that the contribution from the pole
p =tk cancels the incident wave exactly. This behavior agrees with similar
situations in which one part of the diffracted wave cancels with the incident
wave. This result could have been anticipated from the fact that the so-
called ‘shadow zone’ in difffaction problems is caused by the incident wave

cancelling one part of the diffracted wave (Achenbach (1] p.377.)

To calculate W4 and W32, we use an analysis similar to that presented

in [4] and obtain these contributions in the form of the branch cut integrals

Wlﬂ(z, y,a) = 271 /oo 1(p — ik)L_(ik, ) P

= {/ -en L_(p, a)(sfod + k)13 epe=my

®© L_(p,a)(sia? + k?)ePs-mv
+ ./—an 951 (p - tk)L-(Zk, a) dP (27)
and
_—-A —es2 L_(p,a)(sia? + k?)1/2 epetmy
Waale,y,e) = 55 {/.oo Ya(p — ik)L_(ik, @) P
= L_(p,a)(s}o’ 4 K)o+
+ /.a., v — iR L_(ika) %[ (28)

In equations (27) and (28) the integral is along the branch cut joining
—o0 and the branch point —as;, j = 1,2. The path being above the branch
cut in the first integral and below the branch cut in the second integral of
both of these equations. Exhploying the fact that the function L(p,a) takes
complex conjugate values at the top and bottom of the cut- (—o00, —as,), we

can write (27) as

_ZA [ L(pa)(stal 4 RS ere-ms
MAE )= e T - PR

and a similar expression for Waa.




8 Time-Harmonic Incident Wave

If we assume the incident wave to be time harmonic with et as the time

harmonic part, we may find, after suppressing the time factor,

{ e~ (K =k} Pytiks , y>0

ine .
e~ (B =K\ Pytikz , ¥y<0

where k; = ws;, j=1,2.
We can now do without the Laplace transform in time and the Wiener-

Hopf equation corresponding to (16) takes the form

—iA(k? - k3)Y/?
p—ik

Lip)V, = + by

where

pr(o? + K)V? + (g + )
U= =+ By iy - L)

The solution in the transformed domain in this case is

2 — A(k2 - kj)lﬂ L_(p) {pzq:i(p°+k')1/3y}
w.f(p)y) - (p2+kJ2)1/2 (p—-ik)L__(ik)e J ’

J = 1,2, which upon inversion gives

-A /d+ioo L_(p)( k? — k?)llz epz;c’(p’ﬂ})lla,
d

wilz,y) =5 | (0 + EVAL_(ik)(p — ik) .

The contribution due to the pole p =ik can again be seen to cancel the

incident wave. The branch line integral similar to the above case can now be

obtained to give the diffracted field in the two half-spaces.
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Appendix 1

We follow Georgiadis et al. and factorize L(p,a) as:

1
K2 172 w 12
L(p,a) = =
(P, 2) M+ ey, 1482

B
B (e2s3-p?)\1/? -
1 + ﬁ?’ (020 _p?) (Al)

The numerator can be split by inspection while for the denominator we

pa [ a?s? — p? 1/2
may use Noble’s theorem C ([8], p 15). Note that 1+;— { ..__3____} —
1

a’si - p?
1+ 52 o |p| = oo. Hence

3
(s, + p)'/?(asy — p)i/?
Lip,0) = 220282 exp (= lnlh(p)]},
23
where

1+ 8 {(a’s] — p?)/(a?s} — p*)}'/?
1+ (A3)

h(p) =

so that h(p) — 1 as,|p| — oo.

Hence
(s, + )2 { 1 ln[h(z)ldz}
L , — H1 — _—
+(p, ) 1+& P\ 2mi /q_ z—p (A4)
and
-1 h(z)]dz
L-(p) = (as2 = p)"/* exp {:,-—/ n z(z—)]p } (AS)

The contours of integrations are described in Georgiadis et. al. [4]. After
the desired manipulations we may arrive at

pa (asy + p)'/? -1 /-"l o1 [pa [a?s]—2%\] d=
B e e —————— — t .z

(A6)




1 pr \ 22— b} z—p

b 2.3 _ L2
| A7)

Here b, and b; are the two branch points given by b = as;, i = 1,2
(A6) and (A7) give the required factorization.

Appendix 2

The sum splitting required in equation (19) can be performed by inspec-
tion by subtracting the contribution due to the pole at p = ik lying in the
left half-plane because k = k; + ik; where k; is taken to be positive. The
mixed term on the R.H.S. may be written as

(sgaz + k2)1/2

B2 = I palo =0
_ (.s?a? + k2)1/2 1 1 (.s?a’ + k2)1/2 1 B
~ (p-ik) L.(p,a)  L_(ik,a) (p—ik)  L_(ik,a) (B1)

= R_(p, @) + Ry(p, ).
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