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Abstract — This paper deals with the time-varying bilinear quadratic op-
timal control problem. Using Adomian’s decomposition method, we shall derive
first a functional expansion for the input-output map of the system, then, trans-
form the cost functional so that it yields, in a recursive manner, the optimal
- control. The optimal tracking problem is considered to illustrate the theory. An
alternative method is derived which is proved to be more 'robust’.
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1. Introduction

In recent years a great deal of effort has been devoted to the study of the opti-
mal control of nonlinear systems. In particular the bilinedr quadratic regulator
problem was tackled with some success [1-10], however, the methods used led to
difficult computations. In this paper, we shall first present a functional expansion
for the input-output map of time-varying bilinear systems based on Adomian’s
decomposition method ([11] see also [12]). Then, we shall transform the original
optimal control problem, namely a bilinear quadratic optimal control problem,
.into a recursive optimization problem so that at each step we obtain a term uLk]
of the optimal control u. so that ultimately u. = ;50 u,[.,k]. Simultaneously, we

get at each step, a term ac,[.k] of the corresponding optimal state z, and similarly,

Te = k>0 ]
* k>0 T

To the author’s knowledge, it is the first time that Adomian’s decomposition
method is used in optimal control. It is more systematic compared to ad-hoc
techniques presented in [4,7,9] and less computationaly involved than existing
methods.

The outline of the paper is as follows: In section 2, we shall present a func-
tional expansion of the state of bilinear systems in function of the terms of a
convergent series representation of the input. In section 3, we propose a recursive
optimization approach for this class of problems and in section 4, we tackle the
optimal tracking problem. In section 5, we shall derive an alternative method
which is proved to be more robust in the sense that it yields the optimal control
even if the previous method fails and a-fortiori the linear theory also fails. Finally
in section 6, we draw some conclusions and give some ideas on future work.

2. Functional Expansion for Bilinear Systems

In this paper, we shall consider bilinear systems of the form

p ,
%’ = A(t)z + ;uij(t)m + Bty z(0) = «° (2.1)
=

where u(t) €RP,z(t) €R"™ for each t € [0,T] for some fixed T > 0,u and
x are respectively the input and the state, A(t), B(t) and N;(t), j =1,...,p
are time-varying matrices with appropriate dimensions. If z is an n-vector,
let N(t,z) denote the n x p-matrix whose j** column is equal to N;(t)z i.e.,
N(t,z) = [N1(t)z|...|Np(t)z] and &(t,7) be the fundamental matrix solution of
the equation £&(¢,7) = A(t)®(t,7) , &(r,7)=1I (Identity).



For convenience, we shall not mention t explicitly in A(t), B(t) and N;(t) and
write A, B and N;. We shall make the following assumption,
Assumption A.
H3a>0,p>0/ |0(¢7)<petT), 0<T<tLT
(i) |Bll < 8
(iii) AL; >0 /
IV(t,2)u — i} E,_ON(t x[”])u["’"]| < Clja: - m; 1|+ Colu —T—q|
[ > Ly + 1,where T} = Zz_ Ou‘
(iv) p=pC1 <1
(iii) is due to the analyticity of N (t,z)u.We claim the following theorem
Theorem 2.1. Let u € L®[0,T;R?] and suppose that u can be expanded in
a uniformly and absolutely convergent series as u = ¥ 5, ulll . Let assumption
A be satisfied. Then, the solution xz of (2.1) can be ez}mnded in an absolutely
and uniformly convergent series

z= me W, ..., ull) (2.2)

i>0

where the zl,i > 0 are defined by

%m[ol = Am[ol -+ B’U,[O] m[0] (0) = xo
4o+l = Agh+ 4 B L5 Nt ol gbH(0) = 0, i3 0

(2.3)
tef0,7],0<T < o0.
Proof. Let assume, for the moment, that the solution z of (2.1) can be
expanded in a convergent series i.e., T = 3 ;5qzl?.
Replacing in equation (2.1) u and z with their expansions, we obtain

= Zmlﬂ =AY all 4 Z YN Y e+ B S i (2.4)

>0 >0 j=1m2>0 r>0 m>0
which yields
d . . p ,
% Yool = AN 24+ 3 > Zug-m]ij["] +BY ul
i>0 i>0 i>0 mAr=i j=1 i>0
i p .
=AYl + 3 Sl INgell + B Y Wl (2.5)
20 ix0r=0j=1 i>0

We shall define the sequence of functions {z[!};>o as in (2.4).
Let z; = 2 — T; . We have.

-1 4

2 = Az + Blu—w]+ Nt z)u— 3 S N, ahul="), z(0)=0 (26)

dt 1=0 r==0
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t t -1 i .
z(t) = /0 o(t,7)Bu - Tldr + /0 o(t, TN (rz)u— Y S N(r, e yul~"lar

=0 r=0
(2.7
Hence, for I > L; + 1,

t t
0 0
and for a given € > 0, there exists Ly > 0, such that for | > L+1 = max{L;, L2} +
1,

t
la1le* < pB /0 " |u —T|dr + pCh / e*"|2-1|dT + pCo / e lu—_|dr (2.8)

t
5<p /0 S_idr +e (2.9)

where 2; = |z;|e® , since T; converges uniformly to u as [ goes to infinity.
We shall need the following lemma, whose proof is elementary,
Lemma 2.1. If '

t
052,5,7/ Siadr+e, 1>L+1
0

then
R . #-L . =L-1 Aktk
z7 < HzLH*(-l‘-:_-L-)—'+€ Z P35 oo [>L+1.
: k=0 :
Thus, for [ > L+ 1,
#-L I-L-1 Aktk . :
Z < [ll'z’Llla__—L), te Y Pygle™ (2.10)
) k=0

and clearly the left hand side of this inequality converges uniformly to zero as
! goes to infinity. Therefore, Z; converges uniformly to = as | goes to infinity.
Furthermore, the series 352, z¥ is absolutely convergent. Indeed,

1 ) t l ) t -1 [ )
>l < 08 [0S lllar +p [0S |3 N (e, ol
=0 0 i=0 0

i=0 r=0
(2.11)
letting 6 = 3°5_, ||N;|| and using Gronwall’s lemma, we get,

l o t l ) ti-1
S 1ot <16 [ e S lldriexpl-at+8 [ S lldry <o (212)
0

i=0 1=0 i=0

and hence, the series 372, z!! is absolutely convergent which completes the proof
of the theorem.



3. Recursive Bilinear Quadratic Optimal Control

In this section, we shall consider the bilinear quadratic regulator problem namely

min J =: %.’L’TP(t)xu:T + % /0 . (xTQ(t):c + uTR(t)u) dt (3.1)

subject to the constraint (2.1), where P(t) and Q(t) are positive definite sym-
metric matrices and R(t) is a positive definite symmetric matrix and 27 denotes
the transpose of z. Here also, we shall write P, Q, R instead of P(t),Q(t), R(t).

Let J; denote the value of the cost functional when z is replaced by Z; and
u by T; , that is

1 1T
Ji= E_w-?Pfllt=T t3 A (TfQTl'+ﬁ?Rﬂl) dt (3-2)

Suppose that the optimum values u!?, ..., ul~Y and the corresponding z[¥, ...,
zli=1 have been obtained from the minimization of Jo, ..., Ji—1 with respect to
ul¥, ..., ul~1 respectively. We shall seek the minimum of J; with respect to ul’
if one exists, subject to the constraint:

d o ! e —1— 1
a—;x[] = Azl + Bulll + ZN(t,m[rl)u[ "] , 2f0)=0 (3.3)

r=0

We shall make use of the following theorem which results from a minor variation
to the standard linear quadratic optimal control [13, p175-176],
Theorem 3.1. The solution to

min J := %(z—?)TP(z~E)|t.__T+% A " {(2=2)TQ(2~%) + (w—T)T R(w—)}dt

(3.4)
subject to the constraint
d
pre Az + Bw + F(t) , 2(0) = 29 (3.5)
is given by
w=— R1BT{S(z - 2) + v} (3.6)

where P(t) and Q(t) are éymmetric positive semidefinite matrices and R(t) a
symmetric positive definite matriz, S and v are solutions to the Riccati differential
equation

%f- +SA+ATS - SBR'BTS+Q(t)=0 , ST)=PT) (3.7)



and the linear differential equation

% +{AT - SBR'BT}v = S{%—:- ~AZ-Bw-F} , o(T)=0 (3.8)

respectively. A and B are time-varying matrices whereas F is a time-varying
vector function.
The objective function J; can be written as,

1
Jo= E(il—-l + m[l])TP(Tl—l + .'L'[l])|t=T + (3.9)
1 T
2 /) {@-1+2")TQ@-1 + o) + (@1 + W) R@i-1 +ul) )t

while the constraint is written,

[}
dﬁ—t” = Azl + Bull + Fi_y (219, ..., 211, 0, . o 0-1) (3.10)

where zl%(0) = 29, z#(0) = 0,1 > 1, F_; =0, and

-1
Foa(@l, ., a0, ) = SN @ -t 1> (31)

r=0

Now, according to theorem 3.1, the optimal control is given by,

ull = —R_lBT{S.'L'm + -1} ) 120 ) v_1=0 (3.12)

where S and v; are solutions to the Riccati differential equation

% +SA+ATS-SBRT'BTS+Q=0 , ST)=PT) (313)

and the linear differential equation

dv:
—é—} +{AT - SBR'BT}u;=-SF, , w(T)=0 , i>0 (3.14)
respectively where we have taken into account the differential equation satisfied
by . .

Remark 3.1. The Riccati differential equation (3.13 ) is independent of the
iteration step, so it can be solved once for all. Whereas equation (3.14) is a linear
first order differential equation in which the coefficient of %’5‘- and the coefficient
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of v; are independent of i. Only the forcing function depends upon the iteration
step i. These equations will be integrated backward.

Hence, the first approximation to the optimal control law is given by Ty =
~R~1BTS%,. Whereas the I*» approximation is given by

T1=-RIBT(STi1+T2) , 122 (3.15)
Remark 3.2. For linear systems, we obtain @ = —R~1BTSZ; and so, as
I goes to infinity, we obtain v = —R~1BTSz , where § is the solution of the

Ricatti differential equation (3.13) with the boundary condition S(T) = P(T)
which agrees with the standard result of the linear quadratic regulator problem.
Thus, we have proved in part the theorem 3.2 below.

Theorem 3.2. The optimal control and state which minimize the objective
function

dz P
i Az + Bu + Z;uJ-Nja:, , z(0) =zg
j=

are given by the absolutely and uniformly convergent series 375 ul, and 2150 !,
where the ull's and «'s are defined by (3.12), (3.18) and (3.14).

Before we prove this theorem, we shall need the following standard lemma.

Lemma 3.1. Let f and g be two positive functions, g € L'[0,T). If u is
continuous on [0,T) and satisfies

T
0<ul) S FO+ [ glrulr)dr
for all t € [0,T) then
0<u(t) < f(t) + KT f(m)g(r)e” f: 9(0)do g

Proof:(of theorem 3.2)
Let ¥(t,7) be the n X n— matrix solution of

Elc—lt-\Il(t, )+ {AT - SBR—lBT} U(t,7) =0, U(r,7) = Inxn (3.16)
where I,,x, denotes the n by n identity matrix.
Let assume that |¥(t,7)| < Be~"*") for 0 < 7 <t < T, and B and + are positive

constants.
Then the solution of (3.15) can be written as
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v;(t) = /tT‘Il(t, 7)S(7)Fidr (3.17)

Hence,

T T i ‘
@1 <8 [ e IS\ Fldr < 8 [ IS 3 (o] - b ~rar
t t

r=0

l l i-1

l T
U] R7Y - |BI(IS U] 5 / -1(t-7)|g [rl] . o li=1-7]| 2
>l |R7Y|-1B|(I18] > M| + 8 | e 19133 1= fu |dr)

1=0 =0 i=1 r=0

i T -1 4
< IR IBIOSI Y [P+ 88 [ IS T D e ulljar)

1=0 =0 r=0

IA

L oL T Lo e
S lll] < |R7Y - 1BI(ISI S [aH] + 8 / e =718 3" |2 utl|dr) (3.18)
t

=0 1=0 i=0 i=0

Using Lemma 2.1, we obtain

Yio bl <|R7Y-|B|-|S| i [at] + 86 [ (|IRY|.|BI.|S|. Tig |=1])?
x exp{~y(t — ) — [{ Bée""=)|R~1|.| B|.|S| Tioo |2|do} < oo
(3.19)
if 3750 || < co. The previous inequality and equation (2.12) show that the

series Y ;> ull and 2150 z converge together. This ends the proof of Theorem
3.2.

4. Optimal Tracking

In the previous section, we wanted to keep z(t) as ‘close’ as possible to the
origin while using the minimum control u. In this section, we shall consider the
optimal tracking problem, that is making z(t) to follow a prescribed trajectory
Tref (t).

Explicitly, we shall solve

T
min J =: —;—(w—m,ef)TP(m—mref)|t=T+% [) ((a: — Tref) T Q(T — Tref) + uTRu) dt
‘ (4.1)
subject to the constraint (2.1), where again P and @ are positive semidefinite
symmetric matrices and R is a positive definite symmetric matrix. P,@Q and R
are time-varying matrices.
With the same notation as in section 3 and along the same lines, we can state
the following corollary,



Corollary 4.1. The Optimal Control and State which minimize the objective
function (4.1) subject to the constraint (2.1) are given by the absolutely and uni-
formly convergent series 315 ull and >0 z whose terms u¥'s and zW's are
given by

ult = ~R1BT(Szl + v_,) (4.2)
where S and v, satisfy |
%‘% +SA+ATS - SBR™'BTS+Q=0 (4.3)

and
gt-’vi + {AT - )S’BR—lBT} v + S:Z(E)N(t’ alrlyuli=1-r = Qrefy, 121 (44)

together with the boundary conditions

S(T) = P(T)
{vz(T) = —P(T)z,e(T) #5)

Remark 4.1. For linear systems, we obtain

{m + {AT-SBRBT}u = Qu (4.6)

ul! = —R1BT(Szl 4+ v_,)

So, as I goes to infinity, we get u = —R~'BT(Sz +v) = Qz,es where v is solution
of
: T _ -1RT —
{ 0y + {A SBR™'B }'u QTref @7
v(T) = —P(T)zres(T)

which agrees with the standard result.

5. An Alternative Method

From the above development, we can see that although the method intro-
duced in previous sections provides an effective mean to compute the optimal
control, it fails if B = 0. Indeed, in that case 7;, and obviously u = 0 is not an
optimal control.

We shall introduce in this section a modified version which overcomes this
problem and therefore provides the desired optimal control.

Going back to (2.5), we shall define this time, the sequence of functions
{z!?};>0 as follows

4ol = Al 290) =
4ot = Aghtl 4 Bull + 35 Wl TN, 2BHT(0) = 0,020
(5.)



that is

é}_m[o] = Am[ol , ‘ w[O] (O) = I
Ezm[’:'i‘l] = Am["’"“l] + [N(t, x[ol) + B]u[’] (5‘2)
+ Y iy S u TNl litle) = 0, i>0

and so, we have the following theorem.

Theorem 5.1. Let u € L*[0,T,R?] such that u can be expanded in a uni-
formly and absolutely convergent series as u = Y 5oull . Let assumption A be
satisfied. Then the solution x of (2.1) can be expanded in an absolutely and
uniformly convergent series

T =g+ Zm[”l](u‘[(’], .uld)
i>0

where the zll, i > 0 satisfy (5.2),t€[0,T),0< T < oo.
Proof. Along the same lines as the proof of Theorem 2.1.
Next we shall redefine the objective function as follows:

1_ 1 /T, _ |
J = §fﬂﬁ1p'fl+1lt=T +3 A (mﬁlelH + u;‘rmz) dt (5.3)
Suppose that the optimum values ul%, . .., ul~1 and the corresponding z!/, .. .,z
have been obtained from the minimization of Jp, . . ., Jj_1 with respect to ulll, ... ul-1

respectively. We shall seek the minimum J; with respect to ul!l subject to the
constraint

dali+1]

I r
== Az 4 V(2 20) 4+ Blull + Z Zug—llem["] , ey =0, 1>0

r=]1 j=1

(5.4)
Using the same kind of development as in section 3, we obtain the following
corollary,

Corollary 5.1. The optimal control problem (5.8)will have the following so-
lution:

ull = —RUN (¢, %) + BT (Szl+ + o) (5.5)

where S is the symmetric positive semidefinite matriz solution of the Ricatti equa-
tion

‘fi—f +S5A+ATS - SIN(¢, 20 + BIRT! N (¢, 2%) + BITS +Q = 0, S(T) = P(T)

(5.6)
and v; is solution of the equation



B + {AT — SN (¢, 2) + BIRN(¢,2) + BT}y,
+S Zz:l E;‘:l N(t’ x[rl)u[i_r] = eref,

v(T) = —P(T)xres (T), together with (5.2).
Remark 5.1. We can notice that even if B(t) = 0, we can still compute

the optimal control, a point which underlines the efficiency of the method, (as a
matter of fact (¢, %) + B(t) # 0).

(5.7)

6. Conclusion

In this paper, we have solved the multidimensional bilinear quadratic optimal
control problem. The method used, is recursive and consists on solving a matrix
Ricatti differential equation once and updating the control using a linear differ-
ential equation with fixed dynamics and different forcing function at each step.
The method has been used to solve successfully the tracking problem. An alter-
native method has also been derived to deal with situation covered neither by
the previous method nor a-fortiori by the linear theory. This method compares
favorably with the method in [4] in which one has to solve a Ricatti equation
once and solving a sequence of linear differential equations with varying dynam-
ics and forcing functions with increasing dimensions and the methed in [7] and
with the method in [9] which reduces to solving a sequence of time varying Lya-
punov equations and is less computationally involved than other existing methods
. We could have used Adomian’s decomposition to solve directly the Hamilton-
Jacobi-Bellman partial differential equation. However, this approach would have
prevented us to gain any insight .We shall present in future papers extensions to
the optimal control of nonlinear and distributed bilinear systems.
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