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Abstract

In this paper, we prove that for a commutative semiperfect ring, the algebraic
compactness of certain reduced powers forces its local factors to be valuation
rings. We then use this to derive some characterizations of perfect rings. In

~ particular, we show that a result, originally proved by Jensen and Zimmermann-
' Huisgen for artinian rings, holds in fact for perfect rings.

1. Introduction

Several authors have studied the algebraic compactness of reduced products in the
context of representation theory of algebras and have derived characterizations of var-
ious types of rings. In many instances, it is shown that the algebraic compactness of
certain reduced products of modules, which, regardless of the structure of the underly-
ing ring, are always Ro—compact, forces the ring to have specific properties. In [6] for
example, Jensen and Lenzing prove that if R is an uncountable commutative noetherian
loca,'l‘ring which is either complete or with an uncountable residue field and if R has
algebraically compact reduced products, then R is a principal ideal ring or has Krull
dimension 1. Analogous results for finite-dimensional algebras were established in [6]
and also by Okoh [11}. In [7], Jensen and Zimmermann-Huisgen prove that a commuta-
ti\}e artinian ring, all of whose local summands are uncountéble is a principal ideal ring
if and only if every Nl—genlerated module has a non-trivial countable reduced péwer

which is algebraically compact. Their proof relies on an adaptation to p-functors of a
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classical argument of Chase (see [1, 2, 15]), and also makes use of a result of Warfield
[12, 13] on éommuta.tive artinian rings. In this paper, we show by using a“more di-
rect argument, that the stated result can in fact be extended to commutative perfect
rings. More génera.lly, we give, in the case of semiperfect rings, a necessary condition
for certain filter Sums td have algebraically compact reduced powers. The idea here is
to modify a constructive argument given by Jensen and Zimmermann-Huisgen -in [7]
s0 as to conduct the proofs in a filter-theoretic rather than a ring-theoretic context.
This will provide a different and a‘shorter approach to the artinian case since neither
Chase’s lemma nor Warfield’s theorém are uséd'. Furthermore, in our results, algébraic
compactness is replaced by the more specific R-compactness (see Fuchs [4]) allowing

for a further refinement of Jensen and Zimmermann-Huisgen’s result.

Throughout this paper, all rings are associative with 1 and all modules are unital.
A theory of ordinals is assumed where each cardinal is an initial ordinal. For each
cardinal £, k* denotes the infinite successor cardinal of & and, for any set S, |S] is the

cardinality of S. Finite cardinals are denoted by N_;.
2. Notation and Preliminary Results

Definitions. Let M be an R-module and let x be an infinite cardinal

1. M is k-compact if every finitely solvable system of x equations over M is solvable.

If M is A-compact for all cardinals A, M is algebraically compact.

2. A submodule N of M is k~purein M if every system of less than & equations over
N which is solvable in M is also solvable in V. In particular Ro—purity coincides

with the usual purity (in the sense of Cohn [3]).
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‘Remark. It can be shown (see for example [4] or [7]), that M is algebraically compact

if and only if it is (|R| + Ro)-compact.

Next we give some basic facts on filters and introduce a notation that will prove

useful in Section 3.

Definitions. Let ¢ be a filter on a non-empty set I and let « be an infinite cardinal

- or ®_;. Denote by I, the set I\ ﬂ X and by ¢, the filter arising from ¢ by adding

Xep
k intersections.

1. ¢ is said to be proper if ¢ & . Clearly, P(I) is the only non-proper filter on I.

2. ¢ is k—complete if, for each cardinal A < a, ¢ is closed under X intersections, i.e.

@ = ¢, for all cardinals A < «.

3. ¢ is called a principal filter if I\I, € ¢. We then say that ¢ is generated by

the set ﬂ X. It is easy to see that ¢ is principal if and only if ¢ = ¢, for all
Xeo , '
cardinals A. If I, = I, ¢ is said to be a free filter.

4. If & is infinite, the set {X C I : |I\X]| < &} is a free cf(x)-complete filter on
I, which we denote by I(x). Note that when I = k, this filter is simply the

generalized Fréchet filter on &.-

5. Let {M;}ier be a family of R-modules. The set {m € HM,- {iel:m(1)=0}¢€
¢} is a submodule of.HM,- denoted by ¥, M;. It i;eéa,sy to check that it is A-
pure in H M;ifpis A'—eclomplete for some cardinal A. Clearly, Y rxo) Mi = b M;
and Zp‘;‘; M; = HM;. As usual, the reduced ﬁrodﬁct H M;[3, M;is V\;fiiten
HM,-/ p. I istilﬁlter on [ conta.ining"cp, then 3°, M: e_é_ Yy M; and the filter
:;iotient Ty Mi/ T, M; is also denoted 3oy Mi/¢p. -

~
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‘ Proposition 1. Let  be a filter on a set I such that |I,| = x. Then ¢ is non—principal

if and only if ¢ C .. Moreover, ¢, is principal (generated by I\I,).

Proof. If ¢ is principal, then clearly ¢ = .. Assume now that  is non-principal,
then for each z € I, we have I\{z} € ¢ (for, otherwise, every X in ¢ would contain

z contradicting that z € I,,). Hence, I\I, = (] I\{z} € ¢, which means that ¢, is
' T€l,
principal and that I\I, € ¢, \¢.

Proposition 2. Let {M;}icr be a family of R-modules and let ¢ be a filter on I,
where |I| = k. Then,

(i) To. Mi =[] M|, where M =
i€l

M; ifi€l,
0  otherwise
(i) If, in addition, {i € I : M; is k~compact} € ¢ and ¢ is k-complete, the reduced
product [| Mi/¢ 1s k~compact.

i€l

Proof. By Proposition 1 (and as & > [I,]), w« is principal, so m € 3, M; if and only

if [} X € z(m), i.e. if and only if m € [] M. This proves (i). To prove (ii), consider
Xey ' iel
the pure exact sequence

0= To Mifo = T Mifo — T] Mi/ — 0.
i€l i€l
The first term is xk-compact by [9, Corollary 3], and the third is k~compact because,

as i, is principal, [ Mi/¢. = ] M;and I\I, C {i € I : M; is k~compact}. By [9,
i€l i€\,

Lemma), [] M:/¢ is k~compact.
i€l

Let us finally state the following result. It is required in Section 3 and its proof is



straightforward.

Proposition 3. Let k be a cardinal and let I be a two-sided principal ideal of a

k-compact ring R. Then the R-module R/I is k-compact.

(Note. Using the definition of k~compactness, we can in fact obtain that every finitely
presented module over a commutative k~compact ring is itself k—compact (cf [14, The-

orem 6)).)

3. The Main Results

Let R be a commutative local ring which is not a valuation ring, so that there are
elements u,v in R with u & (v) and v & (u). Let J be the maximal ideal of R and
H be a subset of R\J, whose elements are distinct rnodulb J. For each h € H, set

M, = R/(r;) where r, = u — ho.

Lemma 1. With the above notation, for any filter o on H and any proper filter ¢ on

a set I, if oy is non-principal, then the reduced power MY/ where M = T, My, is
not |H,|-compact. If, in addition, each M, is k—compact for some & > |H,|, then the

following statements are equivalent:
(i) M is k—compact.
(it) M is |H,|-compact.

(iii) ¢ is principal.

Proof. Set P = [] M;, where M} =

{ M, ifheH,
heH .

0 otherwise

It is clear that P is isomorphic to H M; (P is in fact the filter sum Lopa M;).
heH,
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Denote by g, (h € H) the canonical composition P Py M; ing p , let p €eP be given
by |

-

p(h)__{ 1+ (ra) ifheH,

0 otherwise

a.hd consider the system
z+ragn =d(ga(ve))  (he€H,) | (1)

with unknowns z, (ys)nen,, where d : M — M/, is the Hiagonal map. The right-
hand sides of (1) are in M?!/+, since, for each h € H,, there exists X € ¢ with
X C H\{h} C z(qn(vp)) and this means gs(vu) € M. Also, if (1) is the subsystem
obtained from (1) by restricting & to a finite subset {h1,hs,...,hy} of H,, and if
wi; (1 £4,7 < n, i# j)are elements of R with w;;(h; — h;) = 1 (recall that

when i # j, h; — h; ¢ J and so h; — hj is a unit of R), then z = quh,.(v,u),
Jj=1
yn; = 3 wijdgn;(g) (1 <i < n)is easily seen to be a solution of (1)' in M7 /4. Thus,
i=1

if M1/ is |H,|-compact, there exist elements ((i)ieq)ier, ((¥2)ien )ier (B € H,) in

" M!/y such that, for each h € H,, the set Ay = {i € I': (zit)rerr +ra(yh)ien = q;;(v;u)}
is in 9. Clearly Ay C Aj, where A} = {i € I : z;» = w(h)}, and therefore A} € ¢
for each h € H,. Furthermore, for each i € I,(zi)ien € M, i.e. theset B; = {h €

H : :b,-h =0} € pand () B; € 90|1|.' Suppose by way of contradiction, that o is
i€l ' ‘

non-principal. foen (1B: € () X, and so there exists ho € (ﬂ B,-) N H,, which
. implies that A} = {i 'GEII: vu(;:;,# 0} et,ie. i€el:ve (rh;e)a, which is empty,
is in 1, contradicting that v is proper. This proves the first part of the proposition.
Next, it is obvious that (i) = (ii). Also, if M is |H,|-compact, then so too is the

isomorphic copy M’/ where I is a singleton and y = {I}. By the first part, o; = ¢

is principal and (iii) follows. Finally, if ¢ is principal, then ¢ = @z, giving M=P,

e
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_ which is k-compact, and so (iii) = (i).
Remarks.

1. Although there is no apparent restriction on the size of the set I, Lemma 1
is effective only if |I| < |H,|. This is so because p|z,| is always principal by

Proposition 1.

2. A closer look at the proof above shows that the commutativity of the ring R
can in fact be replaced by the following less stringent condition: “For each h €

H, vh € Rv". This is the case in particular for left duo rings.

Lemma 1 immediately yields

Corollary 1. Let R be a commz)tativé semiperfect ring and suppose that it possesses a
local factor which is not a valuation ring and with residue field K. Then for any non—
empty subset H of K, there ezists a family { M} }ren of cyclically presented R~modules
such that given any filter ¢ on H and any set I with o) non-principal, the reduced
power (T, My)! /¢ is not |H,|~compact for any proper filter 1 on I. If, in addition,

each My is algebraically compact, then the following are equivalent:
(i) T, My is algebrdically compact
(i) T, My, is |H,|-compact
(iii) @ is principal.
The following appears as Theorem 4.1 in [6]:

Suppose that R is a commutative noetherian local ring with uncountable residue

field and ¢ a proper filter on N containing all cofinite subsets of N. If R is neither



a discrete valuation ring nor an artinian principal ideal ring, there is a sequence of
R-modules M, of finite length, necessarily algebraically compact, such that HM,,/qb
. n

is not algebraically compact.

In this direction, we can use Lemma 1 to obtain a similar result, without the

restriction on the filter .

Corollary 2. Let R be a commutative noetherian local ring with residue field R/J, let
& be an uncountable cardinal such that |R/J| > k and let ¢ be a proper filter on N. If
R is neither a discrete valuation ring nor an artinian principal ideal ring, then there

ezists a k—sequence of R-modules {My}rey of finite length, necessarily - —algebraically

N
compact, such that (@ Mh) /z,b is not K-compact.
heH

We now prepare for the main results. First, we need.

Definition. We say that a commutative semiperfect ring is serial if each one of its

local ring factors is a valuation ring.
A valuation ring need not be a principal ideal ring; however, we have

‘Lemma 2. Let R be a commutative perfect ring. Then R is a principal ideal ring if

and only if it is serial.

Proof. Since the local factors of R are perfect and since each one of them is a principal
ideal ring exactly when R is a principal ideal ring, we may assume that R is local.
Suppose first that R, is a principal ideal ring, and hence artinian. Let J = (v) be the
Jacobson radical of R. Then, as J is T-nilpotent, for any non-zero non-unit element =
of R, there exist a unit r(z) of R and a natural number n(z) such that z = r(z) - v™®),

ie (z) = (v™®)). If y is a non-zero non-unit element of B, then clearly either (z) € (y)



or (y) C (z) according as n(z) > n(y) or n(z) < n(y). This proves that R is a valuation
ring. .Conversely, let R be a valuation ring. It is enough from the first part, to show
that J is principal. Assume not, and let {a; : ¢ € I} be a generating set for J, with

a; # 0 for each ¢ € I. Choose any i; € I, then there exists i; € I with (a;;) C (as,),

" so that a;, = rya;, for some r; € J. Similarly, there exist i3 € [ and r; € J with

a;, = raa;,. Continuing in this way, we obtain elements a;;,r» (n € N) in J such that

ai, =rir3- " Tna;,,, foreach n € N. Since J is T-nilpotent, a;, = 0, a contradiction.

Proposition 4. Let R be a commutative perfeci ring, let K1, K, ..., K, be the residue
fields of its local ring factors and let k be an infinite cardinal such that « < min{|K| :

1 <t < n}. Then the following statements are equivalent.
(1) R is not a principal ideal ring.
(11) R is not a serial ring.

(iii) There ezists a k—generated R-module M such that for every set I with |I| < &

and every proper filter ¢ on I, the reduced power M* [ is not k-compact.

(iv) There exists a countably generated R-module which is not Ro—compact.

Proof. (i) « (ii) follows from Lemma 2. Also, if R is a principal ideal ring then R
is artinian and so every R-module is algebraically compact. Hence (iii) = (i) and (iv)
= (i). Suppose now that R is not serial and that K; is the residue field of a local
summand of R which is not a valuation ring. Let H be a subset of K with |H| = &
and let ¢ be the filter H(Ro) of all cofinite subsets of H. Clearly, for every set I with
|[I| < &, ¢z is non-principal and we have H, = H, since H(Rq) is free. This means

that the preceding corollary applies and there exists a module M (namely, GB M,)
heH
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satisfying (iii). If we now choose I to be any non—empty finite set and & = Ro, we

obtain that M is not Ro-compact, and so (iv) holds as well. -

Remarks

1. Although the hypotheses in Proposition 4 concern the cardinality of the residue
fields K; rather than that of the local rings R;, it is clear that the proposition gen-
eralizes (1) & (2) of [7, Theorem 1]. In fact, if R is a commutative semiprimary
ring with local factors R; (1 < ¢ < n) and if its Jacobson radical is generated
by less than min{|R;| .1 <i<n} elements (e.g. if R is artinian), then, by
uéing an argument similar to the proof of [7, Lemma 2] on the Loewy length of
the R;’s, we infer that the condition “4 < min{]K;]:1 <i < n}” in Proposition

4 can be replaced by the weaker “s < min{|R;|:1 <7 <n}”

2. It is not difficult to show that if H, H' are subsets of K (in the proof above) with

|H| = |H'| = &, then @ M = €D M, if and only if H = H'. This means that
heH heH!

there are at least 2% non-isomorphic k-generated modules M satisfying condition

(iii) of Proposition 4.

3. Let R be a commutative ring such that all countably generated R-modules are |
Ro—compact. As RV} is Ro-compact, it follows from [8] that R is Y-algebraically
compact, and therefore R is perfect. By Proposition 4, this means that R is an
artinian principal ideal ring and so p.gl. dim R = 0 or, equivalently, R has finite

representation type (see for example 5, 16]).

If, in Proposition 4, the ring R, as a module over itself, is k-compact, we can -

sharpen the proposition in the following' way..

Proposition 5. Let R and & be as in Proposition 4 and assume moreover that R is

| 2~awe



11

k~compact (as an R-module) and that  is regular. Then the following statements are

equivalent.
(i) R is not a principal ideal ring.

(it) There exists an R-module M such that for every set I with |I| < & and every
|I|-complete proper filter 1 on I, the reduced power MY/ is |I|-compact but is

not k—compact.
(iit) There exists an R-module which is A-compact for all A < x but which is not

K—-compact.

Proof. We need only prove that (i) implies (ii) and (iii). Assume therefore that R

is not a principal ideal ring, and let K; be as in the proof of Proposition 4. Choose a

subset H of Ky with |[H| = « and let {Mx}ren be a family of cyclically presented R-

modules satisfying Corollary 1. Since R is k~compact, so too is e#ch M, by Proposition

3. Put ¢ = H(k); then, as « is regular, ¢ is a free k~complete filter and @)} = ¢ is

non-principal for any set I with |I| <'x. We thus obtain by Corollary 1, that M7/,

where M = 3~ , M,,, is not k—compact for any proper filter ¢ on I, and that M is not

k—compact either. Furthermore, M is a x—pure submodule of H M, and hence is
heH

A-compact for all A < k. By Proposition 2, this implies that if 9 is |I|~complete, the

reduced product M'/v is |I|-compact.

Remark. Modules which are A-compact but not algebraically compact have already
been discussed in [4]. However, the construction given there (over principal ideal

domains) used a result which does not extend to weakly inaccessible cardinals (see

Je-ewe



[10)).
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