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1. Introduction

In this work we refine a deep theorem of Jensen and Zimmermann-Huisgen [5]
characterizing commutative artinian rings with infinitely many isomorphism classes
of indecomposable modules via the algebraic compactness of certain reduced direct
products. This refinement is performed along two main directions: direct sums and
“thinned” direct products of [5] are replaced by the more general filter sums, and the
cardinality of the local ring factors of the artinian ring is brought into play. Although
several of our arguments, and particularly the construction in section 4, are adapta-
tions, in the context of filters, of the techniques devised in [5], we introduce the notion
of summable families of submodules, in order to extend the well-known and classical
Chase’s Lemma on direct products ([1] and [2]) to our present framework. We also had
to establish a number of results on filters and filter sums, which enabled us to derive
several other characterizations of the rings cited above. This article is organized as
follows. In section 2, the basic concepts of purity, algebraic compactness and filters
are given together with some needed results. Section 3 i; devoted to the generaliza-
tion of Chase’s Lemma; some consequences of this are also included. The main result
characterizing, in terms of filters, the artinian rings described above, is established in
the fourth section along with a corollary that extends [5, Theorem 1]. Throughout

this work, all rings are associative with 1 and all modules are left unital. A theory of
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ordinals is assumed where each cardinal is an initial ordinal, and each ordinal is the set
of all preceding ordinals. Given a cardinal @, o denotes the infinite successor cardinal
of a and, for any set S, |S| is the cardinality of S. Finite cardinals are denoted by
N_;.

2. Notations and Preliminary Results
We start with the usual definitions of purity and compactness.

Definitions. Let M be an R-module and let o be an infinite cardinal.

1. A system of linear equations over M is a-solvable in M if every subsystem of it
consisting of less than o equations is solvable in M. Hence, a system is finitely

solvable precisely when it is Rg-solvable.
2. M is a—compact if every Ro—solvable system of equations over M is a*—solvable.
3. M is algebraically compact if it is A—compact for all cardinals 3.

4. A submodule N of M is a—pure in M if every system of equations over N which
is a—solvable in M is also a-solvable in N. In particular, Ro—pure means pure in

the usual sense (Cohn [3}).

Remarks.

1. It can be shown (see for example [4]), that M is algebraically compact if and only

if it is (|R| + No)—compact.

2. Algebraic compactness coincides with pure-injectivity for modules [8]. Further-
more, every module category contains enough pure-injectives, in the sense that

every module can be embedded in a pure-injective module as a pure submodule.
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In fact, by [4], every module M has a pure-injective envelope P(M), that is, a
module satisfying: (a) M is pure in P(M), (b) P(M) is pure-injective and (c)
the only submodule S of P(M) such that SN M = 0 and (M + S)/S pure in
P(M)/S is the zero module.

We shall also need the following definitions and results on filters.
Definitions. Let I be a non—empty set and let a be an infinite cardinal.

1. A subset ¢ of P(I) is an a—complete filter, or simply an a—filter on I, if (a) I € ¢,
(b) ¢ is closed under taking intersections of less than a members and (c) ¢ is

closed under taking supersets. An Ro-filter is called a filter.

2. A filter ¢ on I is proper if ¢ € ¢. Note that P(I) is the only non—proper filter
on I.
3. Afilter ¢ on I is said to be non-principal if ﬂ X ¢ ¢, and is principal (generated
Xeo

by (] X) otherwise.
Xey

4. A filter p on I is free if [} X = ¢.
Xep

Notation. Let ¢ be a filter on a set I, let o be an infinite cardinal or R_; and let

{M;}ie1 be a family of R—modules.

1. The filter arising from ¢ by adding « intersections is denoted by ¢,. It is clear

that ¢, is an a*filter on I, and that, if ¢ is a—complete, then ¢, = Pef(a)-

2. The set I\ ﬂ X is denoted by I,. It is easy to see that ¢ is free if and only if
Xeo

I, € ¢.



3. The set {X C I : |I\X| < a} is a filter on I denoted by I(a), and which
is a—complete if o is regular. Note that when I = a, this filter is simply the
generalized Fréchet filter on o.

4. For each m € [] M;, define z(m) = {i € I;m(i) = 0} and denote the R-module

i€l
{m € H M;:z2(m) € <p} by ¥, M;. It is easy to see that the filter sum 3_, M;
i€l
is an a-pure submodule of [] M; whenever ¢ is an a-filter on 1. Moreover
i€l
i) Mi = @M; and Yp() M; = H M;, (note that P(I) is not a proper filter).
i€l tel

5. Let i be another filter on I with ¢ C 9. It is clear that 3, M; is a pure
submodule of 3°,, M;. The filter quotient 3", M;/ T", M; generalizes the concept
of reduced product [] Mi/3 M.

i€l

The following results are required in section 4.

Proposition 1. Let ¢ be a filter on a set I with |I| = a and let {M;};e; be a family
of R—modules. Then

(i) ¢ is non—principal if and only if ¢ C ¢,. In particular ¢, is principal (generated
by I\1,).

(ii) For each m € T, M, I\I, is contained in z(m) and T, M; = H M|, where
iel
M — { M, ifiel,

0 otherwise

Proof.

(i) If ¢ is principal, then clearly ¢ = ¢4, and if ¢ is non-principal, then [} X € ¢.
Xeyp
So I, = {;}j<ar, for some z; € I with o/ < a,ie. {| X = () I\{z;}. Now,
Xeo i<o!



for each j < o, z; € [ X, so that X C I\{z;} for some X € ¢. This implies
Xeo
that 7\{z;} € ¢ and therefore (| X € ¢,, s0 that ¢ C 4. Since (Yo)a = Pa,
Xeop
it follows that ¢, is principal.

(ii) Next, let m € 3, M;. Then z(m) € ¢ and so, I\I, = Nxe, X € z(m). Also,
for each m’' € ¥, Mi, z(m') 2 () X which means that 3, M; C ] M].

Xee i€l
Conversely, each m” € [] M; satisfies z(m") 2 () X. Since () X = I\, € p,,
iel Xep Xep
it follows that z(m") € p,. This proves that [[ M C T, M..
i€l

Proposition 2. [7]. Let 0 - A — B — C — 0 be a pure-ezact sequence of R-

modules and let a be an infinite cardinal. If both A and C are a—compact, then so too

is B.

Proposition 3. Let ¢ be an a—filter on a set I, where |I| = e, and let {M;};e1 be a

family of a—compact R-modules. Then [ Mi/ T, M; is a—compact.
i€l

Proof. Consider the pure-exact sequence

00— Z‘pnM;/E«,M; — HM,/E¢ M; — HM"/ZQ%M‘ — 0.

i€l i€l
The first term is a-compact by [7, Corollary 3], and the third is a—compact because
¢a i8 principal and HM,-/E%M,- o~ II M;. By Proposition 2, H M/, M; is
i€l iel\l, i€l

a—compact.

Remark. The same conclusion in Proposition 3 is reached if the a—compactness
of each M; is replaced by the weaker conditions: {¢ € I : M; is S—compact for all
p < a} € pand I\I, C {i: M, is a-compact }. A particular case of the next result

was used in [5]. Its proof is straightforward.

Proposition 4. Let f : B — C be an R-homomorphism of modules and let A be a
5



 submodule of B such that ANker f = 0 and f(A) is a~pure in C for some cardinal a.

Then A is isomorphic to an a-pure submodule of B/ ker f.

Proposition 5. Let ¢ be a filter on a set I and let a be an infinite cardinal such that

ol = || and oo € I,(]1]). Then ¢ is non-principal and a < |I|.

Proof. We have |I\(I\I,)| = |I,| £ |I|, hence I\I, & I,(]I|), and so I\I, & ¢. This

means ¢ is non-principal. Next, by Proposition 1, , is principal, so ﬂ X=INI,€
Xeo
¢a- On the other hand, I\I, ¢ ¢,, by first part. Hence ¢, C ¢y and therefore

a< ||
3. Chase’s Lemma Generalized

The main result in this section (Proposition 6) generalizes Chase’s Lemma [2] in
three directions. First we introduce the concept of summable families of submodules,
we also consider the more general filter sums instead of restricting our study to direct
sums or “thinned” direct products as in [5], and last, this will be done for arbitrary

cardinals.

Definition. A family {A;}ier of submodules of an R-module A is said to be summable

in A if the sum function s : @A,- — A, s((a;)ier) = Za,-, can be extended to an
i€l i€l
R-homomorphism o : [] 4; — A.
i€l

Remarks.
1. It is clear that every finite family of submodules is summable.

2. If A is algebraically compact, then every family of submodules of A4 is summable.

In the same vein, if @ A; is a direct summand of H A;, then {A;};er is summable
i€l i€l
in any module containing the A; as submodules. In particular this holds if @A;
i€l



is algebraically compact. Note also that {A;}:es is summable in J] A; if and only
1€l
if @ A; is a direct summand of HA;.
i€l
3. Suppose that every family of x copies of A, where & is a cardinal, is summable
(for example, if « is finite), and that we have x disjoint families of summable

families {{A;}ic1, }r<x of submodules of A. Then {A,-}'_e Uz is summable in

T<K
A. 1t follows in particular, that if all families of size less than a singular cardinal

A of submodules of A are summable, so too are families of size ).

The proof of the following result is adapted from the one given by Zimmermann—
Huisgen in [5]. The new concepts we add here are those of summable families of
modules and filter sums. In the following a family {F;};c; of p~functors is said to be
rx—filtered for some infinite cardinal « if for each subset J of I with |J| < «, there exists
ip € I such that F;) C (] F,. For a detailed discussion on p-functors, see [10] (note
that p—functors commuti:{with filter sums). If {Bj}sen is a family of R-modules and
H' C H, the map my+ denotes the canonical projection H B, — H B,. f H is a
singleton {h}, vy, is written =,. e el
Proposition 6. Let {A;};cr be a summable family of submodules of an R-module A,
such that |I| = k is a an infinite cardinal, and let {By}renr be a family of R-modules.
Suppose also that ¢ is a filter on H with ¢ C H(k) and that f : A — 3, By, is an
R-homomorphism. Then, for any x—filtered family {F;}ic; of p—functors, there exist

to € I and Hy € ¢ such that ny, f(Fi Aiy) C ﬂ F; H B,l.
1€l h€Hp

Proof. Without loss of generality, we may assume that I is the well-ordered set .
Assume that the conclusion of the theorem does not hold. We use transfinite induction
to establish the existence of sequences {a;}icx in &, {h;}icx in H and elements z; €

F,,; A, such that the following four conditions hold:



() Foy < Fp;ifi<j<x
(i) hi# by if i # j
(iii) ma, f(z:) & Faiyy B

(iv) ma fo((z;)j<i) = 0, where o : [] Ai — A is the extension of the sum s : @ 4; —
i€l i€l
A

Choose any ap < k. By our assumption, there exist zp € FoAay, @ < # such that
f(2o) € Fop =, Bi. Let a1 < & be such that F,, C F,, N F,y (this is possible because
{Fi}icx is filtered). Then there exists hg € H with mp, f(z0) & Fa, Bh,. Suppose
next that for some ordinal 7 < « we have obtained ordinals o;,;;; < «, elements
T; € Fo;As; and elements h; € H for all ¢ < 7 satisfying conditions (i) - (iv) above.
Assume first that 7 is a limit ordinal. Since |[{a; : i < T}| < &, there exists a, < &
such that F,, 2 () Fa,. If we put a = o((2;)i<s), then a € A and z(f(a)) € ¢. So,
for some h, € z(‘;ga)), Th f(FayAa,) € [) FiBn,. Thus, there exist z, € F,, Aq,
-and an ordinal o/ < & such that =, f(:c:)eI¢ Fy By,. Let a,4; < £ be an ordinal
such that F, ., C F,, N F,. Then for all i < 7, we have Fa; < Fa; when i < j,
Thif(2:) € Foyy,Br; and 7y fo((25)j<i) = 0. Also, for each ¢ < 7, h; € z(f(a)).
For, write @ = o((2;);<i) + f(2:) + fo((2;)icj<r) so that my, f(a) = ma, fo((2;)j<i) +
T, f(2i) + mn, fo((z5)icj<r). But the first term in the above sum is 0 by condition
(iv), the second term is not in Fy,,, B,, whereas the last term is in F,,,, By, because
(25)icicr € Foiyy H A, so that o((z;)icjcr) € Fy;,, A. Consequently, 1y, f(a) # 0,
i.e. h; # h; for 'a,<li<z'7 < 7. The case when 7 is a successor ordinal holds verbatim.
Finally, let = o((2;)icx). Then a similar argument as above yields that =, f(z) # 0
for all ¢ < «, so that 2(f(z)) C H\{hi}icx. Hence H\{h;}i<x € ¢ contradicting our

assumption on ¢.

The first consequence of the theorem is the following generalization of [5, Lemma
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5].

Corollary 1. Let k be an infinite cardinal, { A;}ic;r and { Br}ren be two families of R~
modules with |I| 2> &, ¢ be a filter on H such that ¢ C H(x) andlet f : [[ Ai = ¥, By
be a an R-homomorphism. Then, for any k—filtered family {F,} <, of pi-ef':mctors, there
ezist an ordinal 1o < K, a subset Iy of I with |Iy| = |I| and a member Hy of ¢ such that

- (F,o I A,.) <N (F, I B,,) .

i€l <k heH,

Proof. Clearly |I| = k|I|, so there exists a family {I,},<. of disjoint subsets of
I such that I = | J I, and each |I,| = |I|. Consequently, T4 = I M,, where

oln i€l o<
M, = H A;. Since the I, are disjoint, the family {M,},<, is summable in HA;,
i€l i€l
and therefore, by Proposition 6, there exist an ordinal oy < x and Hy € ¢ such that

7rI:’o.f(Fc'roﬁlao)g n FT H B},.

TR h€Hy

The next result extends [2, Theorem 1.2] to the case of filter sums.

Corollary 2. Let {A;}ien, {Br}lren be families of R-modules, ¢ be a filter on H
whose members are cofinite and f : H A; =Y, By be an R-homomorphism. Then for
any descending chain {a;}ien of ﬁn:'z\;y generated right ideals of R, there exist iy € N,
a finite subset Iy of N and H, € ¢ such that

f(a,-o 11 A.-) C @ Bt (aZ,B:).

ieN\Ip heH\Ho ieN

Proof. Put M, = H A;, so that {M, }.en is a summable family in H A;. Then, with
i2n 1€l
x = Ro in Proposition 6, there exist 7o € N and Hy € ¢ such that

f(acMi)) € @ B+ () (aZ,Bh).

heH\Hp 1EN
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Corollary 3. Let A be an algebraically compact R-module and let f : A — ¥, By,
be an R-homomorphism, where {Bp}ren are R-modules and ¢ a filter on H with
¢ C H(Ro). Then for any descending chain {F,},en of p-functors, there ezist no € N
and Ho € ¢ such that mg,f (F,A)C () | Fu [I Bn} -

neN h€Hy
Proof. This follows readily from Proposition 6, as the family {A,}.en, Where each

A, = A, is summable in A.
4. X—-Compactness over Commutative Artinian Rings

In this section, we give a number of characterizations of commutative artinian rings
of infinite representation type, involving the sizes of their local summands. We extend
several results in [5] in the context of filter sums and, as a by-product, we construct
over commutative local artinan rings, for each regular cardinal x, modules which are
A-compact for all A < & but not xk—compact. Some of the steps described in the proofs

appearing in [5] are included here for the sake of completeness.

Let ¢ be a filter on a set H and ¢ a proper filter on a set I, and let {M}}ren be a
family of R-modules. Put M = ¥, My, Ny = M/ S, M, and let f: M7/ Yy M —

H N, be the R-homomorphism given by
heH

f((muidnen)ier + TyM) = ((mhiier + Ty Mi)ren

where my; € M, and let g : M — M!/3, M be the (diagonal) homomorphism
given by g(m) = (...,m,m,m,...) + 3, M. fis a well-defined map since {i € I :
(mpirenr = 0} = ﬂ {t € I : my; = 0}, so that if ((mni)ren)ier € Ly M, then
(mni)ier € Ty Mh f(ilre I;a,ch h € H. Also, as v is a proper filter, g is easily shown to be

a pure monomorphism. In fact, if ¥ is a—complete for some cardinal a, then ¢ is even

a-pure. Next, let ((ma)nen)ier € (£, Mi)!. Then, for each i € I, z((mi)ren) € @,
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so that the set S = ﬂ z((mai)nen) € oy It is clear that (my;)ier = 0 for allh € S, and
therefore Im f C }5:” Nji. We now claim that M is isomorphic to a pure submodule
of (M'/ T, M)/kerf. To prove this, we first show that fg is a monomorphism. Let
m = (mp)hen € L, My with fg(m) = 0; then, for each h € H, (...,my,m4,...) €
Yy My ie {i €I:my =0} €. As ¢ is proper, this implies that each m; = 0, so
that m = 0, as required. Next, as ¢ is a pure monomorphism, M is isomorphic to the
pure submodule g(M) of M1/ ¥, M; also, g(M) N kerf = 0 by the previous claim,
and fg(M) is pﬁre in Im f (since T, M, is pure in Y, Ni, which in turn, is pure
in H N4). Consequently, by Proposition 4, M is isomorphic to a pure submodule of
(Mh ) /H >y M)/ker f. We summarize this in:

Proposition 7. With the above notation:
(i) Im f C L Nu
(it) M is isomorphic to a pure submodule of M'/ 3=, M and of (M'/ T, M)/kerf,
respectively.
Remark. If we suppose that ¢ is a—complete on H and ¥ is f—complete on I for
some infinite cardinals o, 3, we can sharpen (ii) above to

(ii)" M is isomorphic to a min(a, 3)-pure submodule of (M?/ T, M)/ker f.

Notation.

Let R be a commutative local ring which is not a principal ideal ring (i.e. of infinite
representation type). Suppose further that the radical J of R has a minimal generating
set {u,v} and that |[R/J| > « for some infinite cardinal . Let H be a subset of R\J

whose images in R/J are distinct, and for each h € H, let r, = u—hv and M;, = R/(r3).

Proposition 8. With the above notation, for any filter ¢ on H, the pure-injective
11



envelope of 3, M, is H M. In particular, if p is non-principal, then 3°, M, is not
heH
algebraically compact. ’

Proof. Set P = H M,,. Since R is algebraically compact (commutative artinian rings
are always algeb::;i;lly compact), it follows that each M}, is algebraically compact, as
a finitely presented module, and so P is pure-injective. Clearly 3>, M, is pure in P and
therefore P contains, necessarily as a direct summand, a pure-injective envelope Q of
2o My, with P = Q@ S, say, for some submodule S of P. We first show that JP C Q.
Wehave JP = [] (JMa), since J is finitely generated. Let m = (mj)ren € 1 /M.
For any h € H:(Et}lllgre exist a,b € R, my, = au+bv+(ry) = arp+cpv+(rs) =th:;¢;+-(rh),
where ¢, = b+ah. Hence every element m of JP is of the form (c,v+(4))sen, , for some

¢, € R. Denote by ¢, (h € H,), the canonical composition P — M, — P, so that

m =Y gu(m). Next consider the system of equations with unknowns z, y (h € H,)
heH

z+rayn = go(m) (k€ Hy) V (1)

For each A E H,, H\{h} € ¢ (otherwise h would be in each element of ¢, i.e. h €
H\H,). Hence, as H\{h} C 2(qx(m)), it follows that gi(m) € T, M. Also, if (1)
is the subsystem obtained from (1) by restricting A to a finite subset {k,,...,h,} of

H,, if p(ch + (rn))ner, € [I Mn, and if wi; (1 <4, j < n, i# j) are elements
heH,
of R with w;; (h; — h;) =1 (;ecall that h; — h; € J and so h; — h; is a unit, when

i # ), then m = pv and z = 3" guy(m), a, = Dowian,(6) (1 i < m), is easily
i=t i=1

seen to be a solution of (1)’ in ¥, M;. This mea].:; that (1) is finitely solvable, and

as Q is pure-injective, it has a solution zo, (ya)rem, in Q. It is clear that for each

h € Hy,, zo(h) = qn(m), so that zo = Y xo(h) = Y. gr(m) = m. This shows that

JPCQ. Now JSCJIPNSC QNS =0, 50 JS =0. We now end the proof by

showing that S = 0, so that P = Q. Let s = (s5)ren, € S, where s, € M;. There exist

t» € R such that s, =t + (r4). If t, € J for some h € H,, then there exists d € R
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such that ds, = 1 + (r)), and so, as vds € JS = 0, it follows that v € (r;) which is
impossible (otherwise, there is ¢ € R such that v= e(u — hv), ie. eu— (14 eh)v =0,
contradicting that {u,v} is a minimal generating set for J )). Hence, each t, € J, i.e.

S¢ H (JMp)=J ( II M;,) = JP C Q. This completes the proof that S = 0.
heH, heH,

For the rest of this section, R always denotes a commutative artinian ring, J its
Jacobson radical and if Ry x R; x --- X R, is the local ring decomposition of R, pu

denotes min{|R;|: 1< <n}.

Proposition 9. Suppose that i > k for some infinite regular cardinal k. Then the

following statements are equivalent:
(i) R is not a principal ideal ring.

(i) There exists a family {My}ren of & cyclic modules over R such that for every
proper filter 1 on a set I, M!/Y, M is not algebraically compact whenever
M =%, M, and ¢ is any filter on H satisfying |H,| = & and 1) C Hy(k).

Proof. (ii) implies (i), since, over a commutative artinian ring which is a principal
ideal ring, all modules are algebraically compact. Also, R is a principal ideal ring if
and only if each of R;,..., R, is. We may therefore assume that R is local. Suppose
that (i) holds. We first set to deduce (ii) in case J? = 0 and dimp/; J = 2. Using the
Loewy series of R as in the proof of [5, Lemma 2] we obtain that |R/J| > &, and so we
can define a subset H of R\J with « elements, elements (r;)sem of R and R-modules
M, = R/(ry) (h € H) as in the notation preceding Proposition 8. Let ¢ be a filter
on H and ¢ a proper filter on a set I such that |[H,| = « and ¢y € H,(x). Put
M=%, ,M,,N,= M,f [ £y My, and assume that M Iy Yy M is algebraically compact.
By Proposition 7, M is isomorphic to a pure submodule of M/ >y M, which therefore

13



contains a pure—injective envelope @Q of M. Let
f: MI/'Z:¢M—+ H N,
heH

be as in Proposition 7. Since M is isomorphic to a pure submodule in (M?/ 5, M)/
ker f, so too it is in (@ + kerf)/kerf. @ is a pure-essential extension of M and
(Q + kerf)/kerf = Q/Q N kerf; therefore, Q N kerf = 0, and the restriction f|q is

injective. Since @ & J] M, (Proposition 8), it follows that there is a monomorphism
heH,
g: H M, — Zou Ny. Let {F;}icx be p—functors: R-Mod— Ab given by Fi(A) =

heH,
N (rhj A), where {h; : j < k} is a well-ordering of H,,. Since & is regular, {F;};c, is k-

J<i
filtered. By Corollary 1, there exist an ordinal 7 < k, a subset Hq of H, with |Hy| = &
and a member T of o) such that g (F, II Mh) C II M+ (FiZyy Na). For

heHo heH\T i<k
each h € H,, there exists i, < & such that F;, M, = 0, and since each F; commutes
with filter sums, it follows that ﬂ (EE¢|;,Nh) = 0. Also, for each { < x and j < «,
i<n

It is clear that TN {A; : j > 7} € H,(x), and therefore TN {h;:j > 7} € H\Ho
(otherwise H,\Hy, € H,(x) contradicting that |Hg| = ). Hence the set T' N {h; :
j > 7} N Hp is not empty and contains an element h,, say. Now M, is cyclic, and
so g(M;,) = Rm for some element m = (my)pep in Loy Vb We have Ann(m) =
Ann(M,,) = (rh,) = [) Ann(ms) = Ann(my,) (recall that (ry) N (ry) = 0 if b # &').
We claim that u ¢ A,;lerf(mh,). For, if not, u € (rs,); which would yield, as {u,v} is
an R/J-basis for J, that h, € J and this is impossible. On the other hand, Jm =

9(IMy,) = g(F;M,,), since h, € {h; : j > 7}. We thus infer that Jm C [ M
and, as h, € T, Jmy, = 0. This means um;, = 0, a contradiction. Th;lsE f;):':’c;ves
(i) in the special case when J? = 0 and dimg/; J = 2. For the general case, by [9],
there exists an ideal I of R such that J2C I C J and dimp/y; J/I = 2. Let A be the

quotient ring R/I, and J' its radical. Then A is a commutative artinian local ring with
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|A| > |R/I| 2 &, and J? =0, dim,y+ J' = 2. Clearly A is not a principal ideal ring,
and hence, by the first part of this proof, there exists a family {B}}ren of & cyclic A-
* 'iﬁodules for which (ii) holds. Each B, is easily seen to be a cyclic R-module, and since
B!/ T, B where B = ¥, B}, is not A-algebraically compact, it is not R-algebraically

compact either. This completes the proof.

Corollary 4. Suppose that p > & for some uncountable regular cardinal k. The

Jollowing statements are equivalent:
(i) R is not a principal ideal ring.

(ii) There exists an R-module M which is A-compact for all X < k but is not alge-

braically compact.

(i%) There ezists an R-module M such that M*/ 3, M is A-compact for each car-
dinal A < & and each A-complete proper filter ¢ on A, but M/, M is not

algebraically compact.

(iv) There ezists a k—generated R-module M such that M/ Y, M is not algebraically

compact for any proper filter 1 on a set I such that |I| < k.

Proof. It is clear that each of (ii), (iii) and (iv) implies (i). Assume now that (i)
holds. We set to deduce each of (i), (iii) and (iv). First let {M;}rex and |H| = & as
in Proposition 9, and let ¢! = H (h:) Then |H, | = H and ¢! is non—principal, so that
by Proposition 8, M = 1 M), is not algebraically compact. As H(k) is k~complete
on H, M is k-pure in H My, and M is therefore A-compact for each A < k. This
proves (ii). Moreover, ft)erHany cardinal A < « and any A-complete proper filter 1 on
A, ¥} = ¢'. So, by Proposition 9, M*/ ¥, M is not algebraically compact. However,
by Proposition 3, M*/3", M is A\-compact and (iii) follows. Finally; let ¢ = H(Ro)
and let 1 be any proper filter on a set I with |I| < k. It is easy to check that

15



Hgpl| = |H| = k and that 2 = H(|I|*) C H(«). By Proposition 9, M/ ¥, M is not
¢ ¥

algebraically compact. Since M = @) M, is x-generated, (iv) follows.
’ heH

Let R be a commutative local artinian ring with |R| = & for some infinite regular
cardinal «, and suppose that it is not a principal ideal ring. The R-module M in (ii)
above is not x—compact (see Remark 1 in §2). This provides a new approach to the
construction of modules that are A-compact for all A\ < « but not k-compact. Note
that the construction of such modules (over principal ideal rings) was discussed in [4],

but that it used a result that was shown in [6] to fail for weakly inaccessible cardinals.
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