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Abstract

We will consider the use of block elimination for the calculation
of generalized turning and bifurcation points for two point B.V.P’s.
It will be shown that such algorithm will reduce the amount of work
required interms of LU-factorizations to minimal. Since the discretiza-
tion error of the approximated solution has an asymptotic expansion
interms of even powers of h (the step size). This will lead to the use of
some type of extrapolation to produce more accurate results. Finite
differences will be used to discretize the two point B.V.P’s.
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1 Introduction

The problem under consideration is a two point boundary value problem
of the form

_ 2"(z) + f(z,2(2),A) =0, a <z <b
R ={ 50l T8 a1

where F(z, ) is a nonlinear operator from D C Z x R — Y where Z and
Y are two Banach spaces, A is a real parameter and D is an open domain
in Z x R. When discretized by for example finite differences, it will produce
a family of nonlinear operators

F(z,A)=0. (1.2)
For any given A, one may be able to characterize the full solution set
Sy={z€ Z;F(z,)) =0}. (1.3)

If the Frechet derivative F? = F}(zg, Ag) has range all of Y, then S\ will
form a smooth manifold, which vary smoothly in A, of dimension

i = dimNull(F)) — Def(F?), (1.4)

where ¢ is the Fredholm index of F?, see Keller[11], and De f(F?) = codimRange(F?).
While if the range of F? is a proper subset of Y, then (zo, A¢) will be a singu-
lar point and the numerical computation of such points will not be straight
forward but rather complicated. The latter case is what we are interested
in.
We will assume:

Null(F®) = Span{¢o}
and
Range(FY) = {y €Y;9gy = 0}. (1.5)

If (20, Ao) is a simple turning point, then FY is not in the range of F?
and the Fredholm index ¢ is zero since Null(F?) is spanned by one vector
and Def(F_) = 1 and Def(F?,F)) = 0. While if (29, \o) is a bifurcation



point, then FY is in the range of F? which will mean that i = 1. We will
also assume that

BT £2,dodo # 0, (1.6)

in the simple turning point case and

TFS dopo VIFL o )
det( ¥3 Fy, both ¢%Ffz¢1¢1 70,

in the simple bifurcation case, see Crandall and Rabinwitz[8]. This no more
than the Morse condition on the Hessian of the reduced mapping obtained
through Lyaponov-Schmidt reduction, where ¢o, ¢1 € Z and 1y € Z* span
the null spaces of F{ and F* respctively. The condition (1.6) and (1.7) are
needed to gaurantee the existence of a unique solution in each case.

To find Ao exactly ( which could represent a critical load or tempera-
ture ) and in the simple turning point case, the under determined system
F(z,A) = 0 can be augmented with an equation g(z,\) = 0 that enforces
the singularity of F?; that is, to solve the extended system

(1.7)

F(z,A\)=0

9(27’\) = 0. (1.8)

In the simple bifurcation case, the singularity will be unfolded as F(z,A) +
yr = 0 where r is not in the range of (F},, F)) and g(z,\) will have two
components (the procedure of finding ¢ explicitly in both cases will be
discussed in section 2). Perturbed bifurcation points and cubic turning
points will have the form F(z, A, ) = 0, which depends on two parameters.
In the case of perturbed bifurcation points, the problem will be computing
a generalized simple turning point without any modification. In the cubic
turning point case, the problem will be computing a simple turning point
of the extended system (1.8), thus one have to extend (1.8) again to obtain
§ to correspond to F(y,u) in the usual way (to be explained in section 2)
to obtain the system

. F z,‘/\, =0
Fly.m) = { S <o
(2,2, 1) = 0, (1.9)
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where y = (2, A), see Attili[1]. This system is a nonsingular characterization
of cusp points. More on the terminology used here and on the nonsingular-
ity of the Jacobian of (1.9) can be found in Jepson and Spence[10}, Attili[1]
and Spence and Werner(16].

remark 1.1 : The cubic turning point (2o, Ao, o) of F(z,\,u) = 0
with respect to A and u = o fixed corresponds to a simple turning point
(20, Ao, o) of the extended system (1.8) with respect to . This justifies the
idea of the system in (1.9).

The main concern of this paper is to make use of the special structure
of F,(z,)) (tridiagonal matrix), which is the result of discretization by fi-
" nite differences. This will be through the use of block elimination which
will lead to saving alot in the number of operations needed to carry out
each iteration of the Newton’s method. The details of such saving will be
in section 3. It will be shown that once the LU-factorization of Fj(z, ) is
computed, only back substitutions are needed to solve the systems involved.
Also, it was shown in Attili[4] that the discretization error of the approxi-
mate solution of the extended system has an asymptotic expansion in even
powers of h (the step size). This will justify the use of some type of extrap-
olation, inparticular, Richardson extrapolation. Section 2 will contain the
characterization of the singular points. In section 3, we will present the nu-
merical details. Finally some numerical experementation will be presented
in section 4.

2 Characterization of Simple Singularities

To numerically calculate the singular points, one will be practically finding
the intersection of the solution manifold F~*(0) and the singular manifold,
Attili[1,2]. The general problem will then be the characterization of the
singular manifold. For that reason, choose r(z,A) € Z, and T(z,)) €
Zy x R where Z; and Z, are Banach spaces, to be completely continous
and continously differentiabl in Z such that if (2o, Ao) is a singular point
then ro = r(20, Ao) ¢ Range(F?) and T7 (2, Xo)v = 0, F,v = 0 imply v = 0.
Then we will have the following lemma~

Lemma 2.1 The linear operator

F,  r(z3)

AN =71, 3 g
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where A : Zy X R — Z, x R, has a bounded inverse for (z,) in the
neighborhood of (29, o), where Z, and Z, are Banach spaces. Moreover
there ezist smooth functions v(z,A) € Z;x R+, g(2,)) € R and u(z,)) €
Z3 satisfying
Foo=—rg?, w'F, = —¢gTTT
TTy = Iy, u*r = 1. (2.1)

The proof is straight forward and more can be found in Attili[1,2] and
Griewank and Reddien[9]. Note that in the turning point case i = 0 and
in the simple bifurcation point case ¢ = 1. It follows from the above lemma
that (z, ) is in the singular set if and only if g(z, A) = 0, the columns of v
spans the null space of F, and '

97(z,)) = —u*F,v. (2.2)
Differentiation of (2.2) and using (2.1) will lead to
(gT)/ —_ —u"‘Fz’v + u'r'gT - gTT’v, (23)

where the prime denotes differentiation with respect to z or A. If r and T
are chosen to be constants or (z, A) is in the singular set; that is, g(z, A) =0,
then (2.3) simplifies to

(¢7) = —u"Fl (2.4)
or componentwise,

95 & —u*[F,(20 + evj, A) — F, (20, \)]/ € (2.5)
which approximates g’ with only i + 1 extra evaluations of F,. The solution
of the augmented system

F(z,A)=0

9(z,A) =0, (2.6)
will produce the intersection of the manifolds F~!(0) and the singular man-
ifold. The system (2.6) will be regular if and only if

Hy = V.g(20, Ao)do

is nonsingular. Such condition is nothing more than (1.6) and (1.7) in the
simple turning and simple bifurcation points respectevely. The framwork
discussed above can be extended to characterize bifurcation points with
higher rank deficiency, Attili[3] and Rabier and Reddien[14], and also to
characterize symmetry breaking bifurcation points, Attili[2].
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3 Numerical Details

We will present the details of carrying out the computation of cubic turning
points since they are more involved than other singular points for which

the computation is very similar. To do so, one needs to solve the system in
(1.9); that is,

F(z,\,u)=0
9(z, A, p) =0
g§(z, A p) = 0. (3.1)

Note that the Jacobian of this system has a bounded inverse as was shown
by Attili[1]. From laemma 2.1, the determining systems for g and § will be

respectively, . -
F, R v 0
EHIRRE
and
F, F )
R|[s] _[o
gz ~ g9x _gi—_l], (33)
T 0

where T,T, R and R are to be chosen as was described in lemma 2.1. To
find u, the system to be solved will be

w d g §]=0 u 6.9

Looking back at the systems (3.2),(3.3) and (3.4) and the Jacobian of
(3.1), one realizes that F, is the main block of the matrices involved. This
gives rise to the idea of deflated block-elimination which requires one LU-
factorization of F), and then back substitutions will only be needed to carry
out the solutions of the previous 4—systems. In addition to that, one can
make use of the special structure of F,. This is important since the LU-
factorization requires O(NN?) operations while the back substitution requires
only O(N?) operations. To apply the Richardson extrapolation, 3 — 4 dif-
ferent step sizes h are needed. This will mean solving more systems with
the minimum number of LU-factorizations. Not only this but we will show



that even the calculation of g,, gy, g,, §:, §» and g, will require the solution
of systems with F, being the main block.
Let us start with the block-elimination algorithm, Chan[6,7] and Keller[12].

T e

where A is an n X n matrix, b, ¢’ are column and row vectors respectively
and d a scalar.

Algorithm 3.1:
(1) Solve

Av=1>
Aw=f
(ii) Compute
y=(y-cw)/(d=c)
T =w-—yv.

This algorithm will take care of the systems in (3.2) and, after slight
modification (3.4) using A = F. To solve (3.1) and (3.3), we have to expand
step(i) in algorithm 3.1 since b and ¢T are not just one column and one
row vectors as before. For example, to solve the system (3.3) and with
R= (Rl,Rz)T where R; is an n x 1 vector and R, a scalar, we will have
the following algorithm. Algorithm 3.2:

(i) Solve
(a) Fzyl = FA
(b) Fzy2 = Rly
then 5
212 = (Ry — gTy2)/(9r — gTw1)
L1 = Y2 — T2
and
Ly = (5011 __3?12)-
(ii) Solve
(a) F.j, = F)
(b) F,j2 =0,
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then
222 = (=93 §2)/ (92 — 971)
T = Y2 — Tnlh
and
T2 = (9 $22)T
(iii) Compute
§=(1-T"2)/(-T"xy)
and
¥ = (22 — §a;).

For more details on the above algorithm, see Shehadeh[15]. Note that
the systems in steps (i — a) and (ii — a) are identical; that is, y; = §.
Thus there is no need to repeat the back-substitution to find §j; once y, is
computed. This means three back-substitutions will do the job.

It should be noted here that using the block-elimination may be unstable
since F; will be nearly singular. When numerically tested, however, it was
fairly reliable and it only fails when F, is very singular at which point the
accuracy is usually high enough to stop the iterations. Still to avoid the

difficulties which arise when F, is singular or nearly singular, consider the
expanded form of (3.5); that is,

Az +by=f

Tz +dy=7. (3.6)
Since 97 is a left null vector of A, we will have

y =5 /%3 b (3.7)

where T = §I at the singular point. Here (3.7) is well defined since
3 b # 0(uT R = 1). If (3.7) is substituted in (3.6), we obtain

Az = f — b(uT fJuTb). (3.8)

The right hand side of (3.8) is in the range of A which means it is solvable
and the general solution is

-—

T = xp + 70¢0 (3'9)

where z, is any particular solution and vo € R. With this and since T ¢ #
0, we will have the following theorem
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Theorem 3.1 The system (3.6) has a unique solution given by

y =9I f/97b, T =1z, + Yo

where o 18 given by

Yo = (’)’ —dy — CT%)/CT%

and Yo and ¢o are the left and right null vectors of A = F, at the singular
point.

To carry out the Newton’s iterations, one also needs the partials of g and §
with respect to z, A and p. The maindifficulty in doing so is that the gradient
of g and §, however they are defined, depends on second derivatives of f
which may be costly to evaluate.

Consider ¢ = —uT F,v as defined in lemma 2.1. Considering the special
case R =F, (F) ¢ Range(F;)) and differentiating g with respect to z, we
obtain

9: = —ulFo —uTF, v —uTFu,. (3.10)
From the determining systems (3.2) and (3.4) for g,u and v, we will have
Fov = —gF\,uTF, = —gTT, TTv, = 0 and u7F,, = ~uf F\ which when
substituted in (3.10) leads to
g = _UTFzAQ - uTFzzv- (311)
Using the same approach one obtains
9 = —uT Fag — uT Foy. (3.12)

Combining (3.11) and (3.12), we obtain

(gz gA) = (—uTFzz — uTFz,\ — uTFz,\ - uTF,\,\) ( ; ) (3.13)

or equivalently ‘ :
vag=-(7HE) 1), (3.1

Equation (3.14) gives a way of evaluating g, and g,.
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To evaluate the other partials of ¢ and g, we consider the special cases
of having R = F) in the determining system for g and R = (0 1)T and
TT = (TT 0) in the determining system for §; that is, respectively (3.2)
and (3.3) becoms

(z) Fo+ F)‘g =0
(41) TTv =1 (3.15)
and
(1) F,o+6F, =0
(1) g:0+8gr+§=0
(i33) TT% = 1. (3.16)
Comparing (3.15) and (3.16), we conclude that § = v,g = § and § =
—g,v — ggx. This will imply that
(Z) Gz = —9:V: = 22V — g2 — 99z

(22) §r = —g.Ur — g2V = grgx — 9grx
(“’z) gu = =G:Vy — G2V — Gugdx — 99ru- (317)

Let us consider the computation of (3.17 — ¢) only since other partials can
be done in a similar way. To do so one needs v, and g,, or an approximation
to them since we already computed g.,v,g) and g. Differentiating (3.15)
with respect to z we obtian

Fou,+F,,v+¢,F\+gF,,=0

TTv, =0, (3.18)
or equivalently
B3I o
Similarly, to calculate gs» one obtains from (3.18) the system
7 o= ) a2
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where R1 = 2F,,v, + F,,,v + 29, F,\ + g.F,z,\. The matrix on the left hand
side of (3.19) or (3.20) is the same one used in (3.15), which means we
can compute the value of g, while solving for v,. Similar arguments will
be needed and similar systems will be solved to calculate all partials of g
and § in which we make use of the LU-factorization of F,. This means that
6-systems which involve the same matrix in (3.19) and (3.20) are needed to
calculate the partials of ¢ and §. As a result, one can solve 10 systems each
iteration using one LU-factorization of F. It should be noted that one less
system is needed when the singular point is of the simple turning point or
simple bifurcation point type. Other than that the details are exactly the
same and are omitted.

4 Numerical Examples

The following examples were used for numerical experimentation

(1) We solved the one-dimensional nonlinear problem
y" + Ae¥ = 0 on the interval [0,1]

With the boundary conditions y(1) = y(0) = 0 which has a simple
turning point at the critical parameter, A = 3.513807. With the initial
guess A = 3.4 and using the extended system (3.1.5) The results for
the fifth iteration with h = %, %, & and & using block elimination
are given in Table 1.

Table 1

g A
0.143051E-05 | 3.31092
-0.722452E-05 | 3.46261
0.560958E-05 | 3.50110
0.471423E-05 | 3.51062

2'»—! :;[»—4 o i ot D~

Using the results ih Table 1, we applied the Richardson extrapolation
and obtained A = 3.51378 . The results of the application of the
extrapolation are given in Table 2.

11



Table 2.

h Number of Extrapolation
0 1 2 3

1713.31092

3.51318
3.46261 3.51398
3.51393 3.51378
= | 3.50110 3.51378
3.51379

1.1 3.51062

It is clear from Table 1 that ¢ — 0 for the various values of h as

expected. The CPU time is equal to 0.040 sec.

Repeating the same calculations for h = 1, 5 315 and 3= but without

using the block-elimination this time. The results were almost the
same and are given in Table 3.

Table 3

g A
0.1172142E-03 | 3.31001
-395083E-05 | 3.46261
171911E-05 | 3.50110
~.404437E-05 | 3.51062

§|.- zl.-‘ Y= PXIT™

Again applying Richardson extrapolation on the approximate values
of A, the results are given in Table 4.

Table 4.
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h Number of Extrapolation
0 1 2 3

3.31092

3.51318

3.46261 3.51398

3.51393 3.51378

= | 3.50110 3.51378

3.51379

~ | 3.51062

The CPU time is equal to 0.240 sec. It is clear that the CPU time used
with block elimination is % of the time used without block elimination.

We also solved the system with h = % using block elimination.
With the same initial guess A = 3.4, we obtain the solution \ =
3.51295 and g = .98533F — 04. The CPU time was 0.190 sec. This
shows that with such a large system, we were not able to obtain the
same accuracy as was obtained in Table 3, also the time required is
4 times that needed with Richardson extrapolation.

(2) We consider the two parameter problem

n y — — a—
y +AeXp(1 +W) =0, y(0) = y(1) =0,

which has a cubic turning point at A = 5.22949 and y = 0.2457804,
See Attili [1). With the initial guesses A = 5.0 and y = 0.2, and using
the extended system (3.1.14), the results after four iterations with

h = 3,3, 7 and & using block elimination are given in Table 5.
Table 5
h g g A m
% .107766E-03 | .419806E-02 | 4.87464 | .250123
% .201616E-05 | 0.133458E-04 | 5.14327 | .246672
% .230550E-04 | .591536E-05 | 5.20793 | .245981
% -.454786E-04 | .603387E-04 | 5.22398 | .245823
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Similarly applying Richardson extrapolation for the results in Table
5 we obtained A = 5.22931 and p = .245772 . It is also clear from
Table 5 that ¢ — 0 and § — 0 for various values of A as expected.
The CPU time required is 0.160 Sec.

Repeating the same calculations for & = 1,1,& and L but
without using the block elimination. The results were very close to
what we obtained in Table 5. Applying Richardson extrapolation on
the approximate values of )\, and u, we obtained A = 5.22938 and
p = .245776 The CPU time is 1.35 sec. Then the CPU time used
with block elimination is less than ! the time used without block

elimination.

(3) We consider the two point boundary value problem

z"(s) = p(A)X"(s) + 7*Af(2(s) — p(A) X (s5)) = 0

z(0) = z(1) = 0,

where p(A) = M exp(—1/2), f(z) = 2>+ 2z and X(s) = s(1 —s) exp(s),
which has a simple bifurcation point at A = 1. With the initial guess
A=.9and y = .01. With A = 3 the result for the fifth iteration
using block elimination is A = 1.00025. As expected ¥ — 0 and both
components of g did the same. The CPU time required is .08 sec.

Repeating the same calculations for the same h but without using
block elimination, the results we obtained were very similar to the
ones with block elimination. The CPU time required is .83 sec. This
means that the CPU time used with block elimination is less than -113
the time used without block elimination.
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