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Some Properties of E-Bisimple Semigroups

R.J. Warne, A, Al-Assaf, and A. Shuibi

Abstract

We give necessary and sufficient conditions for an E-bisimple semigroup
S§* to the homomorphic image of an E-bisimple semigroup §. We determine
the translational hull of an E-bisimple semigroup and use this result to deter-
mine all ideal extensions of an E-bisimple semigroup by completely 0-simple
semigroup. Finally, we determine all ideal extensions of a Brandt semigroup
with finite set of idempotents by a simple ( E-bisimple) semigroup with zero
appended.

Let E be a band (idempotent semigroup). The collection E(R) of R-classes of
E may be partially ordered by the following rule. If R;,R; € E(R), R, < Ry if
and only if e < fforalle € R, and f € R; (e < f if and only if ef = fe = e).
H E(R), under this order, is order isomorphic to I°, the non-nvega.tive integers,
under the reverse of the usual order, F is called a naturally ordered band. A
bisimple semigroup whose idempotents form a naturally ordered band is termed an
E-bisimple semigroup. In [27], Warne showed that S is an E-bisimple semigroup
if and only if § = (I° x {0}) x (G x P)) U ((I° x N) x (G x K)), where G is a
group, N is the natural numbers, and P and K are sets under the multiplication
(s ), (9, (7, 8), (B, @) = ((n+ 7 — £, k + 5 — 8), (967~*h8*~, z)) where juxta-
position denotes multiplication in G, 8 is an endomorphism of G(8° is the identity
automorphism), t = min(r,k), z = g or p(h0*~""15) according to whether r > k

or k > r and -y is a homomorphism of G into G, the symmetric group on XK.



In section 1, we give necessary and sufficient conditions for an E-bisimple semi-
group S* to be the homomorphic image of an E-bisimple semigroup § (Theorem
1.5). Theorem 1.5 generalizes the corresponding result of Munn and Reilly [10] from
bisimple w-semigroups ( E-bisimple semigroups whose idempotents form a sernilat-
tice) to arbitrary E-bisimple semigroups. Theorem 1.5 also generalizes Warne’s
isomorphism theorem for E-bisimple semigroups {27, Theorem 2.1]. In section 2,
we determine the translational hull of an E-bisimple semigroup (Theorem 2.1) and
we use Theorem 2.1 to determine all ideal extensions of an E-bisimple semigroup
by a completely 0-simple semigroup (Theorem 2.3). Finally, we determine all ideal
extensions of a Brandt semigroup with finite set of idempotents by a simple (E-

bisimple) semigroup with zero appended (Theorem 2.5).

If S is a semigroup, E(S) will denote the set of idempotents of S. If o is an
order type, a* denotes with the converse order. We term S an o-semigroup if
E(S) with its usual order has order tyﬁe a*. The structure of w-bisimple inverse
semigroups was given by Reilly [12] and Warne [17]. The structure of w"-bisimple
inverse semigroups was given by Warne [20]. The structure of I-bisimple inverse
semigroups and w"I-bisimple inverse semigroups was given by Warne in [21] and
[26] respectively. The structure of w-inverse semigroups was given by Munn [8]
and the structure of I-inverse semigroups was given by Warne [24]. For another
approach to structure theory see [28]. Various properties of these semigroups (i.e.
the determination of homomorphisms, congruences, ideal extensions, study of the

lattice of congruences) have been investigated, for example, by Baird [1, 2|, Bonzini
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and Cherubini [3-5], Munn [9], Munn and Reilly [10], Petrich [11], Scheilblich [13],

and Warne [19, 21-23, 25, 26.]

Unlike the semigroups in the paragraph above, the E-bisimple semigroups are
not inverse semigroups nor are they H-compatible. Nevertheless, the structure
theorem is of sufficient simplicity to yield a homomorphism theory and an ideal
extension theory. A determination of the congruence relations and an investigation

of the lattice of congruences will be the subject of future papers.

We will use the following basic definitions, concepts, and notation of [7]: Green’s
relations (R, £, H, and D), R-class, regular semigroup, simple semigroup, bisim-
ple semigroup, inverse semigroup, equivalent definitions of inverse semigroup, right
zero semigroup, idempotent, natural (usual) partial order of idempotents, semilat-
tice, band, completely 0-simple semigroup, Rees representation M°(G; F, A; @) of a
completely 0-simple semigroup, Brandt semigroup, Rees representation M°(G; A, A; A)
of a Brandt semigroup, right (left) translation, inner right (left) translation, linked
left and right translation, translational hull, partial homomorphism, ideal extension
(we will often call an ideal extension just an extension), weakly reductive semigroup,
full symmetric inverse semigroup, and determination of Green’s relations on a com-
pletely 0-simple semigroup, adjunction of a zero element to semigroup § (for brevity,

we say S with a zero appended).

Let p b a congruence relation on a semigroup S (p will also denote the natural

homomorphism of S onto S/p). If a € S, ap will denote the p-class of S containing
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a. If S/pis a type A semigroup, p is called a type A semigroup congruence on S. For
example, if S/p is an inverse semigroup, p is called an inverse semigroup congruence
on S. A congruence p is termed an idempotent separating if epf (e, f,€ E(S))
implies e = f. A semigroup S is termed H-compatible if  is a congruence relation

on S,

1 Homomorphism of E-bisimple semigroup.

In this section, we give necessary and sufficient conditions for the E-bisimple
semigroup 5* to be the homomorphic image of the E-bisimple semigroup S (The-

orem 1.5).

First we will state the structure theorem for E-bisimple semigroups in more
convenient form (Theorem 1.1), and, for an E-bisimple semigroup §, we will give
the determination of R, £, E(S), and the usual order on E(S) (e < f if and only

ifef =fe=c¢).

(Lemma 1.2). These results will be used frequently and often without explicit

mention.

Theorem 1.1 (Warne {27, Theorem 1.1]). S is an E-bisimple semigroup if and
only if S = (I° x {0}) x (G x P))U((I° x N) x (G x K)) where G is a group and
P and K are sets under the multiplication

((n 47—k s),(967"*h,9)) fr>k

((n,k + s —r),(g(h6* ), p(ROF"-17))) ifk>r
4
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where 0 is an endomorphism on G and v is a homomorphism of G into Gy, the

symmeltric group on K.

We will write S = (G, P, K, 8,).

Lemma 1.2 (Warne, [27, Lemma 2.1.]). Let S = (G, P, K,0,~) be an E-bisimple
semigroup. Then (a) ((n,k),(g,p))R((r,8),(h,q)) if and only if n =r, (b)
((n, K), (9, P)L((r, ), (h,q)) if and only if k = s and p = g, (c) ES =
{((0,0),(e,p)) : p € P}U {((n,n),(e,9)) : ¢ € K} where e is the identity of

G, (d) ((k,k),(e,p)) < ((r,7),(e,q)) if and only if k > r.

Let Eq = {((0,0),(e,p)) : p € P} and, for i > 0, E; = {((3,%),(e,q)) : ¢ € K}.
Thus, E(S) = U(E; : ¢ € I®). Note, each E; is a right zero semigroup and if f € E;
and t € E;, then f < tif and only if i > j. Furthermore, E; E; C Erax(i,j)- These

facts will be utilized without explicit mention.

We will need a determination of the smallest inverse semigroup congruence on

an E-bisimple semigroup (Lemma 1.3).
Let $ be an E-bisimple semigroup. Then, ((n,k),(g,p))p((r,3),(k,q)) if n =
r, k=3, and g = A.

Lemma 1.3 Let S5 be an E-bisimple semigroup. Then, p is the smallest inverse

semigroup congruence on S.

Proof. By a routine calculation, p is a congruence relation on S. It is easily

checked that a®pa implies a € E(S). If e € E; and f € E;, efpfe. If e € E;
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and f € E; with i # j, then ef = fe. So, in either case, epfp = fpep. Hence,
S/p is an inverse semigroup (S/p is a regular semigroup whose idempotents com-
mute). Let A be an inverse semigroup congruence on S. We next show p C \. Let
(((n, k), (9,2)), ((n, k), (9,9)) € p. Since ((k, k), (e, p))R((k, k), (e, 9)), ((k, k), (e, p))
AR((k,k), (e, q))A. Hence, ((k,k),(e,p))M((k,k),(e,q)). Thus, ((n,k),(g,p))A =
((n, k), (g, P))((K, k), (€, 2))A = ((n, k), (9, 0))((k, k), (e, )X = ((n, k), 9, 9))).

The next proposition exhibits the difficulties encountered in generalizing the
isomorphism theorem for E-bisimple semigroups to 2 homomorphism theorem. Such

difficulties were not encountered in the case of bisimple w-semigroups.

Proposition 1.4 Let S = (G, P, K, 8,v) and 5* = (G*, P*, K*,0",~*) be E-bisimple
semigroups with E(S) = U(E; : 1 € I°) and E(S*) = U(E} :1 € I°). Let ¢ be a

homomorphism of S onto S*. Then, Ei¢ = EF for all i € I°.

Proof. Let ¢ be a homomorphism of S onto 5*. Thus, if ({(k, k), (e,p)) € E(S*),
there exists ((r,s),(g,t)) € S such that ((r,s),(g,t))¢ = ((k,k),(e,p)). Since
((r, ), (9, )L((5, ), (e ), ((k, B), (e PL((5,8), (e, ). Thus, ((s,), (e,8))¢ =
((k, k), (e,p)). Hence, ¢ = $|E(S) defines a homomorphism of E(S)onto E(S*).
We will show E;¢ = ET for all i € I°. First, we will show that Eq¢ = E}. Clearly,
Eo$ C Ep, for some k € I°. Suppose k > 0. Thus, if e € E3, e = e;¢ for
some e; € E; with { > 0. Hence, ege; = ¢, if g € Eq. Thus, eodel = e which
contradicts the fact k > 0. So, Eod C E;. Suppose f € E} — Eyd. Then, f = e,
for some e, € E, with r > 0. Since e,eq = ¢, f(eggﬁ) = f and, thus, egp = f, a

contradiction. Hence, Fyé = Eg. Next, we assume Ed = E'for0 <:i<n We
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will show E,,.,.lqg = Ey .. First, we show En+1ef> C E;, . Wenote Frp10 C E
for some k € I°. First, we assume k > n + 1. i e;,, € E;,,, then e}, = ed
for some e; € E; with t > n + 1. Thus, ee,q1 = €;. Hence, e:+l(eﬂ+1q§) = e -
So, n+1 > k, a contradiction. Thus, ¥ € n 4+ 1. Suppose £ < n + 1. Hence,
Ekq; = E}. Let en41 € Enyy and e € Ey. Since enpa€; = €ny1, e,,.,.lqt;ek& = e,,+1q'§.
Hence, €n41¢ = éx¢. Thus, En16 = Exd = EL. Suppose |E:| > 1. Let g1,9; € E;
with ¢; # g2. Hence there exists en41 € Eny1 and e; € Ej such that e,.,+1<§ =g
and ey} = gg. Since e,y1€; = €reny1; 12 = §201- Thus, g = ga, a contra-
diction. Thus, in the case |[Ef| > 1, k = n+ 1 and E ., C E;,,. Next, we
assume that |E}| = 1. Thus, if Ef = {e}}, ens16 = exd = €} for eny1 € Enp
and e; € E;. For |E;| = 1, we have two possibilities |[K*| = 1 or |P*| = 1 and
|K*| > 1. We first consider the case |K*| = 1. Let eg € Ej and choose e; € Ey
such that eod = ef. Thus, (eoSeo)d = e5S*e}. Using [14, corollary 1.3], epSeq is
an E-bisimple semigroup with E(egSep) = {eo} U(U(E; : 7 € N)) and e S"Ej is
a bisimple w-semigroup (a bisimple semigroup T such that E(T) = {f; : 7 € I°}
with f; < fi if and only if § > k). Let ¢, = ¢legSeo. Let A denote the smallest
inverse ser'nigroup congruence on egSeg. Thus, A C ker ¢,{(a,b) € ker ¢, if and
only if ady = b¢,). Hence, (ad)p; = adi(a € egSey) defines a homomorphism of
eoSeg/ X onto €5 S"ey. Thuls, (ens1M)$1 = (exA)¢y and, hence (eq414, exA) € ker §;.
Using Lemma 3, Ese/A is a bisimple w-semigroup. Hence, by [21, Theorem 4.1] or
[11], every congruence relation on eSe/X is a group congruence or an idempotent

separating congruence. Thus, (e,41,€:) € A which contradicts Lemma 3. Thus,



k=n+1and E,;1é C E} ., in the case |Ey| = 1 and |K*| = 1. Finally, we
consider the case |P*| =1 and |[K*| > 1. If £ > 0, |E}| > 1. So, we may assume
k = 0. Thus, E,;,é = {e3}. We first show that Eyé = {e}}. If n = 0, we are
finished. So, we assume n > 0. Thus, if e; € F, and e,4) € Eqp1, €ny1€1 = €ppa
and, hence, e,y 1de1é = eny16. Thus, e[‘;(el&) = ¢). Hence, e1¢ = er. Thus,
E1d = {es}. Since |P*| =1, let P* = {q}. Let p € K and p; € P, and let
e(e”) denote the identity of G(G*). Then, ((0,1),(e,p))R((0,0),(e,p1)) implies
((0,1), (e, ))8R((0,0), (e, p1))¢ = ((0,0), (€*, 4}). Furthermore, ((0,1), (e, p))L((1,1),
(e,p)) implies ((0,1), (e, p))$L((1,1), (e, p)¢ = ((0,0), (e, 9)). Thus, ((0,1),(e, p))¢ =
((0,0),(g,q9)) for some g € G*. Hence, for n € N, ((0,n),(e,p))¢ = ((0,0),(g", ¢)).
Let ((n,0), (e, p1))¢ = ((2,¥), (k,1)). Since ({0, ), (e, p))((,0), (e, 1)) = ((0,0), (e, p1)),
((0,0), (g™, ((z,9), (h, 1)) = ((0,0),(e",q)). Hence,z =y =0, t=gqand
g"h = €. Thus, ((n,0),(e,;1))é = ((0,0),(¢7",q)). Hence, ((n,n),(e,p))d =
((0,0),(e*,q)) = €. Thus, E,é = {3} for all n € I°. This contradicts the fact
that ¢ maps E onto E*. Thus in the case [Ef| = 1, |P*| =,1 and |K*| > 1, we
have shown k = n + 1 and, thus, E, ¢ C E; ... So, this completes the proof that
Enn1d C FE,.1. We next show that Epp1d = E;.,. Suppose f € E; , — E. 1.
Hence, f = e,é where ¢, € E, with r > n + 1. Thus, e,epy; = e,. Hence,

f(e,,“qE) = f. Thus, f = e,,+1<f>, a contradiction. Hence, E,H.]qE =E;,,.

Theorem 1.5 The E-bisimple semigroup §* = (G*, P*, K*,8",v*) is a homomor-
phic image of the E-bisimple semigroup S = (G, P, K, 8,~) if and only if there ezists
a homomorphism ¢ of G onto G*, a surjection ¢ of P onto P*, a surjection ¢ of
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K onto K*, and q € G™ such that $0* = 0¢4C, where gC, = q~'gq for g € G and

(hy) = p(héy*) for all h € G.

Proof. Let ¢ be a homomorphism of S onto 5*. Using Proposition 1.4, ((k, k), (e,p))é =
((k, k), (e*, phr)) where 3, is a surjection of P onto P* and v,(k > 0) is a surjection
of K onto K*. The remainder of the proof is the same as the proof of [27, Theorem
2.1] with “isomorphism” replaced by “homomorphism” and “bijection” replaced by

“surjection” and so will be omitted.

2 Extensions of F-Bisimple Semigroups

In this section, we determine the translational hull of an E-bisimple semigroup
(Theorem 2.1) and use this result to find all ideal extensions of an E-bisimple
semigroup by a completely 0-simple semigroup (Theorem 2.3). We also determine
all ideal extensions of a Brandt semigroup with finite number of idempotents by a

simple (E-bisimple) semigroup (with zero appended) (Theorem 2.5).

Theorem 2.1 Let S = (G, P, K,8,7) be an E-bisimple semigroup, and let W =
{(g,6): g € G and § : P — P is a nonconstant mapping}. Let S be the translational

hull of S. Then, § = SUW under the multiplication

(91:61) - (92,62) =

(9192, 51052) if 6,06, is not constant
(0,0),(g192, %) if (p)broby =k forallpe P

(a,b), (h(g6%),q(g8*'%))) ifb>0

(a,8), (h, ) - (9,6) = { ( '
((a,0),(hg,qd)) ifb=0
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(9,6) - ((a,b),(h,q)) = ((a,8),((g0%)h,9))

where jurtaposition denotes the multiplication in G and o denotes iteration of map-

pings,
and vy - v = viv; where v, v; € § and juztaposition denotes the multiplication of

S.

Proof. First note that if ey € Ey, then ¢y is a left identity of S. We will use

this fact without explicit mention. Let p be any right translation of & and define

¢(p) = ((0,0),(e,p)) for p € P. Then,

((n,k),(9,9))#(z) forany 2€ P if k>0
((n, k), (9,9))p =

((n, k), (9,9))¢(q) if k=0.

Let p = py. Conversely, we show p, is a right translation of S. Let z = ((n, k), (¢, p))
and y = ((r,s),(h,¢)). If s > 0 and 3 + k — min(k,7) > 0, (zy)ps = (zy)é(z) =
z(y#(z)) = z(ypy) where z is any element of S. If s = 0 and k — min(k,r) > 0,

(z9)ps = (2y)d(q) = =(yd(g)) = =(yps). i s = 0 = k — min(k,r), (zy)py =
(zy)d{q) = z(yd(q)) = z(ypy). So, py is a right translation of S. Let A be any left
translation of S. (Thus, if eg € Ep a) = (ega)X = (egA)a for all @ € S. So, A is the
inner left translation A.,,. Next, let p, be a right translation of § which is linked to
some left translation of 5. We will show that p, is an inner right translation of §
or ¢(p) = ((0,0), (94, p4)) where §; : P — P is a nonconstant mapping. Suppose

ps 18 linked with A,. Let ¢ € P, eo = ((0,0),{e, q)), and fo € Ep. Then, (egps)fo =
10



eo(forr)- So, #(q)fo = tfo for all ¢ € P and all f, € Ey. So, if ¢,u € P, ¢(q)fo =
$(u)fo for all fo € Eo. Let ¢(q) = ((a1,51),(21,3)) and ¢(v) = ((az, b3), (22, 92)).
Thus ((a1, &), (1,51))((0,0), (e, p)) = ((a2,82), (z2,¥2))((0,0),{(e, p)) for all p € P.
Hence, 2, = a; and &y = b;. If & > 0, =z = z, and y; = y2. Thus, ¢ is a
constant function, and, hence py is an inner right translation. If &, = 0, =z, =
x2. By the definition of py, ((0,1),(e,p))d(q) = ((0,1),(e,p))d(v) for all p € P.
So, ((0,1), (e, p)){(@1,0), (z1,31)) = ((0,1),(e,p))((61,0),(z1,3,)) for all p € P. If
a; > 0, y1 = y2. Thus, in this case, ¢ is a constant mapping, and hence, p; is
an inner right translation. If a; = 0, either p, is an inner right translation or we
may write ¢(p) = ((0,0), (g4, pds)) where é; : P — P is a nonconstant mapping.
Hence, a right translation p of S that is linked with some left translation of S
is either an inner right translation or p = p, 5 where (g,68)(p) = ((0,0), (g, pé))
for p € P where § : P — P is a nonconstant mapping. Let W' = {ps : g €
G and § : P — P is a nonconstant mapping}. Let p(, s, Pgsi) € W'. Lei
eo = ((0,0),(e,p)) € Eo. Then, eop(s 5,))P(0:6) = (€o((0,0),(61,06:)))P(50,60) =
((0,0), (91, 261))((0,0), (g2, p(61082))) = ((0,0), (9192, p(61063)))- I p(é108;) = k for
P € P, €p(g,,5)P(a:.62) = €0P((00).(g1g2,%)) 1f 6108, is a nonconstant mapping, then
€0P(g1,6,)P92,5:) = COPlgrg2.6108;). Using the fact that for x € 5, there exists ¢y € Ey

such that req = z, we obtain

P(g192,61062) if 6,06, is not a constant map
Plg:.6:1)P(g2,82) = (21)

P((0,0).{g192 %)) if p(61052) =kforallpe P

11



Similarly,

Dot oy Plon i) = { Pl(arbs) (1 (g2t ) (a1 1y 1T 51 >0 (22)
P((a1,b1).(h192,2162)) if by =0
and
P(01.6)P((a2,b2hlh2,02)) = Pl{az b2) (91672 Yha.a2))- (2.3)
Clearly,
PviPrz = Puywy TOT ¥y, 05 € S. (2.4}

Note, if (A, p.) € S, (eopu)eo = eo(egh,) implies veg = seg. Hence, A\, = A, and,

thusa (’\n Pv) = ("‘U!PU)'

We will show that T : § - SUW (W ={(¢g,6):9€ Gand §: P — P,
a nonconstant map}) defined by T'(A,, p,) = v and T( A, p(e5)) = (9, 6) defines an
isomorphism from 5 onto SUW under the multiplication given in the statement of

the theorem.

It is easily checked T is well defined. Using 2.1 - 2.4, T is a homomorphism.

We show 7' maps S onto SUW. If v € S, T(A,, p,) = v. Suppose, (g,6) € W.

Let s = ((0,0), (g,%)). Then, (g,6)(g)((0,0), (¢, p)) = ((0,0), (g, 64))((0,0), (e, p)) =

((0,0},(g,k))((0,0), (e,p)) = 3((0,0), (e, p)) for all p,q € P. Thus,ify € S, (g,6)(q)y =

sy for all ¢ € P. Hence, (2p(,5)y = z(yA,) for z € S. Thus, (A,,pu.5) € § and

T(A,, P(g,S}) = (956)'

Next, we show T is one-to-one. Suppose T(X,,, p, 6)) = T'(Asy, P(g2.55))- Thus,

(g1,61) = (g92,62). So, s1fo = (91,61)(P)fo = (92,82)(p)fo = s2fo for all p € P
12



and fo € Eo. Hence, A, = A,,. Thus, (A,,0,6)) = (As,Pgs))- Clearly,

T(Avy pu) = T( Ay, pi) implies (A, p,) = (Ag, po).

The next lemma will be utilized in the determination of the extensions of E-

bisimple semigroup by a completely 0-simple semigroup (Theorem 2.3).

Lemma 2.2 Let § = (G, K,P,0,v) be an E-bisimple semigroup and let T =
M°(H; F,A,Q) be a completely 0-simple semigroup. Let the following mappings

be given
Yp:F> I A= 7:A>5PUK,a:F-5GandB:A—> G

and n be a homomorphism of H into G such that g¢n; # 0 implies m¢é = i and

(mB)(ia) = gmin. Then ¢ defined on T* (ie., T\0) by

(a; 1, m)p = ((3¢, m&), (taanmpB, m7))

is a partial homomorphism of T* into S. Conversely, every partial homomorphism

of T* into S is obtained in this fashion.

Proof. Using the conditions of the theorem, it is easily checked that ¢ defines a

partial homomorphism of 7* into S.

Conversely, let ¢ be a partial homomorphism of T* into S. Using the determi-

nation of R and L for T and Lemma 1.2 ((a) and (b)), we may write
(a; ¢, m)p = ((1p, m£), (g,mr))
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wherege Gand ¢ : F = I° £ : A—= I° and 7: A = PU K are mappings. Since
(gnt; i,m) € E(T) if qmi # 0, (¢,,};4,m)p € E(S) and, hence, using Lemma 1.2
(c), m¢ = itp. By proof of [7, Theorem 3.5], we may assume 1 € FNA and ¢; = e,

the identity of H. Define the mappings e of F into G and # of A into G as follows:

(e;3,1)p = (3%, 1£), (ie, 17)) and (1, m)p = ((1¢,mE), (mf, m7)).

Define the mapping 5 of H into G by (a;1,1)¢p = ((1¢,1£), (an,17)). Since
(a;1,1)(b;1;1)p = (ab;1,1)¢ for a,b € H, one easily shows that n defines a
homomorphism of H into G. Since (e;1,m)p(e;i,1)p = (gmis1,1)p if gmi #
0, we obtain mBia = gnin. Finally, (a;i,m)e = (e;i,1)p(a;1,1)p(e;1,m)p =
(2%, m7), ia(an)mp).

In order to describe the extensions of an E-bisimple semigroup by a completely

0-simple semigroup, we will need the following concept (see [15]).

If V is an extension of a semigroup S by a semigroup T' (with zero), then we say
V is determined by a partial homomorphism if there exists a partial homomorphism
7 :T* — § such that for all A,B€ T*,¢,d€ S,
ABifAB#0(inT
Aob — #0 (inT)
ArBr f AB=0{inT).

Aoc = (Am)c; coA = ¢(Ar), cod = cd where o denotes the operation in V. [15].

Theorem 2.3 Let S = (G,P,K,9,v) be an E-bisimple semigroup and let T =
MO(H; F,A; Q) be a completely 0-simple semigroup. Let i — u; and m — v, be

mappings of F into G and A into G, respectively and let w be a homomorphism of
14



H into G such that gujw = vnu; if gn; # 0. Let Y denote the set of nonconstant
mappings of P into P. Let a — 4., { = «;, and m — J,, be mappings of H into Y,
FintoY, and A into Y respectively such that v, = Yab for all a,b € H, o;¥afm €

Y foralli€ Fya€ H,andm € A, Brnaj =7, if gm; # 0, and Bna; is a constant
mapping P into P if ¢,,; = 0.

Let V = SUT* under the multiplication “o” defined as follows:
(a;4,m)(b; j,n) if gmj # 0
(a;i,m)o(b; j,n) = 3 ((0,0), (ui{aw)vmu;(bw)vn, ko)) #f gm; = 0 where ko = Ly7u8n
where pfna; = €y for allp € P.

(2.1)

(a’ism)o((ns k)s (9, P)) = ((na k)'.' ((“i(aw)vm)aﬂg:p)) (2'2)
n, k), (g((u;(aw)v, )0F), p((u;(aw)vy, 951 if k>0

(. 1), (g,p))a(a,i,m)={ (9, 0o 000" 20) T %>
((n,0), (9(wi(aw)vm), pati¥a fm)) if k=0

(2:3)

((n, k), (9, p))o((r 8), (B, q)) = ((n, k), (g, P))((r, 5), (R, q)) (2.4)

where jurtaposition denotes the multiplications of T and S. Then (V,0) i3 an ez-
tension of S by T'. |

Conversely, every extension of S by T is determined in the above manner or is
given by a partial homomorphism and hence in this case an ezplicit multiplication

is given by Lemma 2.2.

Proof. We first establish the converse. Let (V,0) be an extension of S by T and
let S be the translational hull of §. Since S is a weakly reductive semigroup
(as eo € Fp is a left identity of S), there exists an extension (V,0) of § by T

15



such that (V,0) is a subsemigroup of {V,0) by [7, Theorem 4.20: see also [6]].
Using Theorem 2.1, (eg, §;) where eg is the identity of G and §; is the identity
of mapping of P onto P, is the identity of S. Thus, using [7, Theorem 4.19],
(V,0) is determined by a partial homomorphism 7 from T* into S. Since partial
homomorphisms map D-classes into D-classes and since T* is a single D-class and
S is a single D-class of 5, either T*x C S or T*x C §\S. So, if T"r C S,
then (V,0) is given by the partial homomorphism 7 and the multiplication “o” of
V is determined by employing Lemma 2.2 But, if T"# C S\S = W = G x Y
(see Theorem 2.1), we may write (a;i,m)xr = ((a;¢,m)yp, (a;i,m)) where ¢ is a
mapping of T into G and ) is a mapping of T into Y. It is easily seen that ¢
defines a partial homomorphism of 7™ into G. We may assume that 1 € FN A
and qi; = e, the identity of H (use proof of [7, Theorem 3.5]). Let (e;¢,1)p = u;
for i € F, let (e;1,m)p = vy for m € A, and let {(a;1,1)p = aw fora € H. It
is easily checked that w defines a homomorphism of H into G and that : — u;
and m — v, are mappings of F into G and A into G such that gmw = vpu; if
gmi 7 0 and (a; i, m)p = u;(aw)v,, (see also [7, Theorem 4.22]). Let (a;1,1)) = 7,
for a € H, let (&;4,1)¢ = ;i € F, and let (e;1,m)y = B, for m € A. Then,
a— Y, t = a;,and m — 3, define mappings of Hinto Y, FintoY, and Ainto Y,
respectively. Since (a;1,1)¢¥(b;1,1)¢ = (ab; 1, 1), ¥a¥s = Yes for all @, b € H. Since
(a;i,m) = (&1, 1)¥(a; 1,1)1p(e;1,m)¢p = Yo Prm, CiYaPm € Y for alli € F, a € H,
and m € A If gu; # 0 fne; = (1, m)P(e;5,1)¢ = (gmjs 1, 1Y = 7,,,. If

gmi = 0, (e;1,m)o(e;5,1) = (e;1,m)x(e;4,1)r € S. Thus, using Theorem 2.1,

16



Bma; must be a constant mapping of P into P. Furthermore,
(a;1, m)7 = (ui(aw)vm, @i%aBm)- (2.5)

We next establish (2.1) - (2.4). Let (a;¢,m),(b;j,n) € T*. Thus, if ¢..; = 0,

using (2.5) and Theorem 2.1, we obtain

(a;i,m)o(b;j,n) = (aji,m)n(b;j,n)7

(ui(a“")vms aiqaﬂm)(ui(h"’)vm @57 Bn)

il

((0,0), (u:(aw)vmu; (bw)vs, ko))

where poiYafma;7s8n = loYsBm = ko for all p € P where ¢B,a; = £, for all g € P.
So, the second part of (2.1) has been established. The first part of (2.1) and (2.4)
are valid by the definition of extension. Use (2.5), the definition of extension by

partial homomorphism 7, and Theorem 2.1 to establish (2.2) and (2.3).

We now establish the direct part of the theorem. Let ¢ — u;, m — v,,, a —
Yay t — @i, and m — B, and w be as in the statement of the theorem. We
will show that V = S U T* under the multiplication (2.1) - (2.4) is an extension
of § by T. First, define » : T* — S by (a;¢,m}r = (vi(aw)vm, ¢;7.58-) (note
aiYaPm € Y). We will show that = defines a partial homomeorphism of T* into S.

Let (a;,m),(b;4,n) € T* with gm; # 0. Then,

((a;3,m)(b; j,n))m = (aqm;b; i, n)m

= (ui(aq'mk b)wvm X Yagm; 55n )

I

(10w bV, OYaY gy V60n)
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= (“iawvmujb"“mﬂa ai‘nxﬂmaj‘rbﬂn)
= (ui(aw)vms ai'?nﬁm )(uj (bw)vm aj'rbﬁn)

= (a;i,m)x{b;j,n)m.

Thus, by [7, Theorem 4.19), = determines an extension (V,0) of § by 7. Us-
ing [7, Theorem 4.20), (V,0)(V = T* U §) is an extension of § by T if and
only if (a;i,m)o(b;j,n) € S if ¢.; = 0. Using the condition f,,c; is a con-
stant mapping if ¢m; = 0, for gn; = 0, (a;¢,m)o(b; j,n) = {(a;i,m)n(b; j,n)7x =
((0,0), (ui(aw) vy, ujbwv,, ko)) where paiYaBma;VeBn = LovsBn = ko for all p € P
where g8,a; = {; for all ¢ € P. So, (V,0) is an extension of $ by T. We have
already shown that (a;i,m)o(b; j,n) for ¢,; = 0 is given by the second part of
(2.1). The first part of (2.1) and (2.4) are valid since (V,0) is an extension of S
by T. It is easily checked that (a;i,m)o((n,k),(g,p)) = (a;i,m)x((n,k),(g,p))
and ((n, k), (g, p))o(a; i,m) = ((n, k), (g, p))((a; ¢, m)r) are given by (2.2) and (2.3)

respectively.

The following proposition will be used in the determination of the extensions of

a Brandt semigroup by an E-bisimple semigroup (with zero appended) (Theorem

2.5).

Proposition 2.4 Let S = (G,P,K,0,4) be an E-bisimple semigroup and let H
be a group. Let t € H and let 3 be a homomorphism of G into H such that

gn = t(gb)nt™! for all g € G. Then,

((n, k), (g, P))pp = tngﬂ't_k
18



defines @ homomorphism of S inito H.

Conversely, every homomorphism of § into H is determined in the above man-

ner.

Proof. Let eg(ey) denote the identity of G(H). Let ¢ be a homomorphism of
S into H. Fix elements pp € P and ¢y € K and suppose ((1,0),(eq,po))p = ¢
and ((0,1),(ec,q0))p = v. It is easily established that ((n,0),(eg,po))p = t* and
((0,n), (eg,90)) = v™ for all n € N. Moreover, for any p € P,q € K, and n €
N, ((n,0), (eq; p))¢ = (((n,0),(eq,P0))((0,0),(ea,p)))¢ = ((n,0),(ec, po))ven =
t" and ((0,n),(ea,9))p = ((0,n),(ec: q))@((n,n), (e, 9))¢ = v"ey = v™. Since
tv = (((1,0), (ec, po))((0, 1), (€3, 9)))y¢ = ((1,1), (€, 90))¢ = en, v = t~". Thus,
((0,n),{ec,q))p =t for ¢ € K and n € N. Next, define a mapping 5 from G to
H by gn = ((0,0),(g,%))p where ¢ € G and £, is a fixed element of P. As above,
((0,0),(g,p))w = g forany p € P. It is easily seen that gi1gsn = (g19:)n for g1, 9, €
G. Furthermore, ((n, k), (g,p))¢ = ((n,0), (ec, Po))((0,0), (g, Po))((0, k), (ec, p)) =
t"gnt~*. Finally, since ((0,1), (ec,p))((0:0), (9, 9)) = ((0,1), (98, p(g7))),t g7 =
((0,1), (e, p))¢((0,0), (g, 9))¢ = ((0,1), (g0, p(g7)))p = (g0)nt ™" or gn = t(g8)nt™}

for g € G.

Next, we establish the direct part of the theorem. Since (gn)t = t(¢8)y, (¢n)t* =
t(g0)nt = ttgh*n = t*(g6*)n. Proceeding by induction, (gn)t" = t*(gd")n forall n €

N. We will show ¢ is a homomorphism of S into H. Let ((n, k), (g,p)), ((r,3), (f,¢)) € S
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with » > k. We will use the fact that t"—*(g8"*)p = (gn)t"*.

(((n, &), (g, P))(r, 8), (f, )}

((n+71—k,9), (96 f,9))p
™4 % (g8 gt~

£ (g0 *n) i~
t*(gn)t"* fnt=*
t(gn)t= e (fo)t?

((r, k), (9, 2))((r, 8),(f, 2))p

The case k > r is similar. We use the fact that (f6*")pt~¢-7) = === fp_ The

case r = k is straightforward.

Theorem 2.5 Let § = M°(H;I,I;A), where I is a finite set, be a Brandt semi-

group and let T* be a simple semigroup. Let V be an extension of S by T. Then,

there exists a homomorphism w: A — wy of T* into Uy, the full symmetric group

on some r element subset Xof I. For each A € T, there exists a mapping ¥4 of

X into H such that

1. iYa(twatpp) = ivbap for allt € X. The products in V are given by

2. AoB= AB

3. azmoA

4. Aola;i,m) = {
0.

Aol = 00A =

(a{mipa);i,muwy)

0, the zero of S

(tw3'ta)a;iwy’, m)

20
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Conversely, let S be a Brandt semigroup and T* be a simple semigroup such
that TN S = 0. If we are given the mappings w and 34 described above and define
product o in the class sum of S and T* by (2) - ({) above, then V is an extension
of 5 by T. In the special case T* = (G, P,K,8,7), an E-bisimple semigroup, the

homomorphism w is explicitly given by Proposition 2.4.

Proof. Let V be an extension of S by T. Using [16, Theorem 1} or [18, Theorem)],
there exists a homomorphism w : A — w4 of T* into Z; the full symmetric inverse
semigroup on [ and, for each A € 7%, a mapping 14 of 5,4, the domain of w,, into
H such that (1) is valid with X = s45, (2) is valid, (3) is valid with X = s4, and
(4) is valid with X = t4, the range of w4. T*w is a finite simple inverse semigroup
and hence a group [7]. Let wg(E € T*) denote the identity of T*w. Thus, wg is
the identity mapping on some (finite) subset X of I. Hence, using [16, Lemma 1],
84 =ty = X for each A € T* and T*w is a subgroup of Ux. The converse is a

consequence of [16, Theorem 1].
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