
11.8 Power Series 
 
A series of the form 
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If the power series converges for some x, it’s sum is a function 

Sum= 2 3
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Domain: set of all x where it converges. 
Example: 2 31( ) 1 .... ...

1
nf x x x x x

x
= = + + + + + +

−
 where domain 

1 ( called the radius of convergence) and diverges 1x x< ≥  
 
Power series centered about a or in ( x – a ) or power series about a 
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If x = a it converges to 0c   . 

For a given power series ( )
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(i) The series converges only when x =a  
(ii) The series converges for all x 
(iii) There is a positive number R such that  series converges if |x-a|<R and 

diverges if |x-a|>R. R is called RADIUS OF CONVERGENCE 
 

Interval of convergence ( I ) is the interval where the series is convergent. 
If it converges at ONE point say b then R=0 and I ={b} 
If it converges at for all x then R = ∞  and I = ( , )−∞ ∞  
If it converges for  |x-a|<R then  Radius is R and Interval is (a - R, a + R). We have to test 
at the end points at a-R and a +R to find the INTERVAL I 
 
Finding values of x where a given series converges: 

Example 1(book): For what values of x is the series 
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Apply Ratio Test, 0x ≠ , we have 
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By Ratio Test, the series diverges when 0x ≠ . It is convergent if x = 0. 
R=0 and Interval of convergence is {0} 
 



Example 2(book) : For what values of x is the series 
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Apply Ratio Test, have 
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By Ratio Test 
- It is convergent if |x-3|<1 
- It is divergent if |x-3|>1 
- The test fails if | x - 3| = 1. We have test for x – 3 = 1 and x - 3 = -1   

x = 4 and x = 2 
If x = 4 the series becomes 1

n∑  ( Divergent ) 

If x = 2 the series becomes ( )1 n

n
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Given series is convergent 2 4x≤ <  
R=1 and Interval of convergence is [2, 4) 
 
READ EXAMPLE 4, 5, and 6. 
 
Recitation Problems  
 

Ex1: (book ex-8) 
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We can apply Root Test lim lim  if x 0n
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If x = 0 , it converges , R = 0, Interval of convergence = {0} 
 
 

Ex2: (book ex-20) 
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We can apply Ratio test 
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Converges if 2 1
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When x = -1/3 , The series becomes ( )1 n
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When x = 5/3 , The series becomes 3
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Ex3: (book ex-29) If 
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(a) Given that 
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must converge at least in  4 4x− < ≤  It must converge at x = -2 
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(b) It is not necessarily convergent at the other end point x = -4. That  may  
not be convergent 

 
 
Ex4: (book ex-21) Find the radius of convergence and the interval of 

convergence for   ( )
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Apply Ratio Test 
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The series converges if 1
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<  | x-a |< b  a - b< x < a + b 

We need to test when | x-a |= b, The series becomes 
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