11.8 Power Series

A series of the form

$\sum_{n=0}^{\infty} c_{n} x^{n}=c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}+\ldots$. where x is variable and $\mathrm{c}_{n}^{\prime} s$ are constants.

If the power series converges for some \mathbf{x}, $\mathbf{i t}$'s sum is a function

Sum $=f(x)=c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}+\ldots .+c_{n} x^{n}+\ldots=\sum_{n=0}^{\infty} c_{n} x^{n}$

Domain: set of all \mathbf{x} where it converges.

Example: $f(x)=\frac{1}{1-x}=1+x+x^{2}+x^{3}+\ldots .+x^{n}+\ldots$ where domain $|x|<1$ (called the radius of convergence) and diverges $|x| \geq 1$

Power series centered about \boldsymbol{a} or in ($\boldsymbol{x}-\boldsymbol{a}$) or power series about a

 $\sum_{n=0}^{\infty} c_{n}(x-a)^{n}=c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}+c_{3}(x-a)^{3}+\ldots$.If $\mathrm{x}=\mathrm{a}$ it converges to C_{0}.
For a given power series $\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$ there are three possibilities
(i) The series converges only when $x=a$
(ii) The series converges for all x
(iii) There is a positive number R such that series converges if $|x-a|<R$ and diverges if $|\mathrm{x}-\mathrm{a}|>\mathrm{R}$. R is called RADIUS OF CONVERGENCE

Interval of convergence (I) is the interval where the series is convergent.
If it converges at ONE point say b then $R=0$ and $I=\{b\}$
If it converges at for all x then $\mathrm{R}=\infty$ and $\mathrm{I}=(-\infty, \infty)$
If it converges for $|x-a|<R$ then Radius is R and Interval is ($a-R, a+R$). We have to test at the end points at $\mathrm{a}-\mathrm{R}$ and $\mathrm{a}+\mathrm{R}$ to find the INTERVAL I

Finding values of x where a given series converges:

Example 1(book): For what values of x is the series $\sum_{n=0}^{\infty} n!x^{n}$ is convergent
Apply Ratio Test, $x \neq 0$, we have
$\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(n+1)!x^{n+1}}{n!x^{n}}\right|=\lim _{n \rightarrow \infty}(n+1)|x|=\infty$
By Ratio Test, the series diverges when $x \neq 0$. It is convergent if $x=0$. $\mathrm{R}=0$ and Interval of convergence is $\{0\}$

Example 2(book) : For what values of x is the series $\sum_{n=1}^{\infty} \frac{(x-3)^{n}}{n}$ is convergent. Apply Ratio Test, have

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(x-3)^{n+1}}{n+1} \cdot \frac{n}{(x-3)^{n}}\right|=|x-3|
$$

By Ratio Test

- It is convergent if $|x-3|<1$
- It is divergent if $|x-3|>1$
- The test fails if $|x-3|=1$. We have test for $x-3=1$ and $x-3=-1 \rightarrow$ $x=4$ and $x=2$
If $\mathrm{x}=4$ the series becomes $\sum \frac{1}{n}$ (Divergent)
If $\mathrm{x}=2$ the series becomes $\sum \frac{(-1)^{n}}{n}$ (Convergent, by Alternating test)
Given series is convergent $2 \leq x<4$
$\mathrm{R}=1$ and Interval of convergence is $[2,4$)

READ EXAMPLE 4, 5, and 6.

Recitation Problems

Ex1: (book ex-8) $\sum_{n=1}^{\infty} n^{n} x^{n}$
We can apply Root Test $\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=\lim _{n \rightarrow \infty} n|x|=\infty$ if $\mathrm{x} \neq 0$
If $x=0$, it converges, $R=0$, Interval of convergence $=\{0\}$

Ex2: (book ex-20) $\sum_{n=1}^{\infty} \frac{(3 x-2)^{n}}{n 3^{n}}$
We can apply Ratio test
$\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(3 x-2)^{n+1}}{(n+1) 3^{n+1}} \cdot \frac{n 3^{n}}{(3 x-2)^{n}}\right|=\lim _{n \rightarrow \infty} \frac{|x-3|}{3} \frac{n}{n+1}=\frac{|3 x-2|}{3}=\left|x-\frac{2}{3}\right|$
Converges if $\left|x-\frac{2}{3}\right|<1 \rightarrow \mathrm{R}=1$ and we can find interval $-1<x-\frac{2}{3}<1=\Rightarrow \frac{-1}{3}<x<\frac{5}{3}$
When $\mathrm{x}=-1 / 3$, The series becomes $\sum \frac{(-1)^{n}}{n}$ Alternating (Convergent)
When $\mathrm{x}=5 / 3$, The series becomes $\sum \frac{3^{n}}{n 3^{n}}=\sum_{n=1}^{\infty} \frac{1}{n}$ (Divergent)
Interval of Convergence $\frac{-1}{3} \leq x<\frac{5}{3}$

Ex3: (book ex-29) If $\sum_{n=0}^{\infty} c_{n} 4^{n}$ is convergent, does it follow that following series are convergent (a) $\sum_{n=0}^{\infty} c_{n}(-2)^{n}$ (b) $\sum_{n=0}^{\infty} c_{n}(-4)^{n}$
(a) Given that $\sum_{n=0}^{\infty} c_{n} 4^{n}$ is convergent $\boldsymbol{\rightarrow}$ it is convergent for $x=4$. By Theorem 3 , it must converge at least in $-4<x \leq 4 \boldsymbol{\rightarrow}$ It must converge at $\mathrm{x}=-2$
$\rightarrow \sum_{n=0}^{\infty} c_{n}(-2)^{n}$ is convergent.
(b) It is not necessarily convergent at the other end point $\mathrm{x}=-4$. That may not be convergent

Ex4: (book ex-21) Find the radius of convergence and the interval of convergence for $\sum_{n=1}^{\infty} \frac{n(x-a)^{n}}{b^{n}}, b>0$
Apply Ratio Test
$\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(n+1)(x-a)^{n+1}}{b^{n+1}} \cdot \frac{b^{n}}{n(x-a)^{n}}\right|=\lim _{n \rightarrow \infty} \frac{|x-a|}{b} \frac{(1+1 / n)}{b}=\frac{|x-a|}{b}$
The series converges if $\frac{|x-a|}{b}<1 \boldsymbol{\rightarrow}|\mathbf{x}-\mathbf{a}|<\mathbf{b} \rightarrow \mathbf{a}-\mathbf{b}<\mathbf{x}<\mathbf{a}+\mathbf{b}$
We need to test when $|\mathbf{x}-\mathbf{a}|=\mathbf{b}$, The series becomes $\sum_{n=1}^{\infty} n \rightarrow$ Divergent

