
11.7 Strategy for Testing Series 
 
Given the series na∑ , one use any test based on his experience. Given below is the 
recommended order: 

1. If the series is of the form 1
pn∑ , it is p-series ( if p>1 convergent ,otherwise it is 

divergent) 
2. If it is geometric series with partial sum 

1  or  and it converges if 1 and diverges otherwise.n n
ns ar ar r−= ∑ ∑ <   

3. If the series is similar to p-series or similar geometric, the Comparison Test can 

be used e.g. 
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 and  is convergent with p=3/2. Therefore a  is convergent.n n n na b b∑ < ∑ ∑  
4. Apply divergence Test if   lim 0bn
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≠ . 

5. If the series is Alternating ( ( ) ( )11  or 1n n
n nb b−∑ − ∑ −  , decreasing and  nth term 

goes to 0 ), then it is convergent. 
6. If the series has factorial , apply ratio test( 
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7. If the series has raised to power nth power, apply root test lim nn
a L

−>∞
=  ( 

convergent if L<1, divergent if L>1 , fails if L=1 ) 
8. If the series is not geometric or p-series or telescoping of the terms cannot be 

done, apply integral test. /divergent/absolutely convergent. 
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divergent. 
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This an alternating series with 1
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1. This is decreasing sequence of positive numbers. 
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By alternating series test, it is convergent. 
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Since nb∑  is divergent ( Harmonic Series ), therefore na∑  is also divergent. 
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The series is divergent by divergent test. 
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We can try root test 2
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It is   absolutely convergent by root test. 
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It seems only test that can be applied is Comparison Test. 
We se that : 2 2 20 cos 1 ==> 0 cos  ==> 0 cosn n n n n n n n n≤ ≤ ≤ ≤ ≤ + ≤ +  
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Using The Comparison Test, the given series is divergent. 



 
 


