
11.5 Alternating Series 
 
Summary:  An alternating series is a series whose terms are alternatively positive and 
negative. 
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CONVERGENCE TEST: 

Given the alternating series as  ( ) 1
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Convergent if it satisfies two conditions 
 
1. 1n nb b+ ≤  for all n ( some terms may be excluded) [ DECREASING] 
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Estimating Sums: The partial sum ns  of any convergent can be used as an 
approximation to the total sum s ( ns s ). For this we must find the remainder 
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To convergence test of alternating series we have to check if the series is alternating. We 
see that 
 

(a) The terms of the series are zero when n is even  sin 0
2
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= . It means it has no 

effect on the series. We can exclude such terms. We are left with odd terms 
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1. It is decreasing .. bigger the value of n smaller is value of sin ( 1n nb b+ ≤ ) 
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Ex3(book-28). Approximate the sum of the series correct to 4 decimal places 
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Add many terms  that gives sum up to 5 places and fourth place is more than 5 

62 3 4 5 6

1 2 3 4 5 6 the 6th term is b 0.000023
8 8 8 8 8 8

s = − + − + − + =  

Sum up to 5 terms  5 0.098785s s = −  . Adding 6th term 0.000023 does not affect the 
fourth decimal place o the sum. Therefore sum = -0.0988 
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The series is alternating wiht  ( )ln p
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1. Check if the series is decreasing: We can write 
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means we can find x  ( depending on p) where the series will start decreasing.  
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 (a) If  0p ≤ , 
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lim lim  will be 0, since ln k will be in the numerator.
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 (b) If  0p > . We can apply Hospital Rule and   differentiate the  numerator and 
denominator as many as times as power of ln x is positive. Once it becomes negative, 
the ln x will go to numerator and the limit will become 0. 
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Finally ln x wil go in denominator and the limit will be zero. 
 CONVERGENT 

 
 


