11.5 Alternating Series

Summary: An alternating series is a series whose terms are alternatively positive and negative.

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + = \sum_{i=1}^{\infty} \frac{(-1)^{n-1}}{n}$$

The n^{th} term is $a_n = (-1)^{n-1} b_n$ or $(-1)^n b_n$ where $b_n = |a_n|$.

CONVERGENCE TEST:

Given the alternating series as $\sum_{n=1}^{\infty} (-1)^{n-1} b_n = b_1 - b_2 + \dots$ where $b_n > 0$ is said to be Convergent if it satisfies two conditions

1. $b_{n+1} \le b_n$ for all n (some terms may be excluded) [DECREASING] 2. The limit of nth term tends to zero $\lim_{n \to \infty} b_n = 0$

Estimating Sums: The partial sum s_n of any **convergent can be used as an approximation to the total sum s** ($s \approx s_n$). For this we must find the remainder $R_n = s - s_n$ where $|R_n| = |s - s_n| \le b_{n+1}$

Ex1:(book-16). Test the convergence of $\sum_{n=1}^{\infty} \frac{\sin \frac{n\pi}{2}}{n!}$

To convergence test of alternating series we have to check if the series is alternating. We see that

- (a) The terms of the series are zero **when n is even** $\sin \frac{n\pi}{2} = 0$. It means it has no effect on the series. We can exclude such terms. We are left with odd terms
- (b) If n is odd n=2k+1, then $\sin \frac{(2k+1)\pi}{2} = (-1)^k$. And the series becomes $\sum_{k=0}^{\infty} \frac{(-1)^k}{2k+1!}$.

The series is alternating with $b_k = \frac{1}{2k+1} > 0$ and

- 1. It is decreasing $(b_{k+1} < b_k)$
- 2. $\lim_{k \to \infty} b_k = 0$
- → CONVERGENT

Ex2(book-17). Test the convergence of $\sum_{n=1}^{\infty} (-1)^n \sin \frac{\pi}{n}$. We see that for all n=1, 2,

the $\sin \frac{\pi}{n}$ is in First or Second Quadrant and is positive for n>/2. Also

- 1. It is decreasing .. bigger the value of n smaller is value of sin $(b_{n+1} \le b_n)$
- 2. $\lim_{n \to \infty} b_n = \lim_{n \to \infty} \sin\left(\frac{\pi}{n}\right) = 0$ $\Rightarrow \text{CONVERGENT}$

Ex3(book-28). Approximate the sum of the series correct to 4 decimal places

 $\sum_{n=1}^{\infty} \left(-1\right)^n \frac{n}{8^n}$

Add many terms that gives sum up to 5 places and fourth place is more than 5 $s = -\frac{1}{8} + \frac{2}{8^2} - \frac{3}{8^3} + \frac{4}{8^4} - \frac{5}{8^5} + \frac{6}{8^6}$ the 6th term is $b_6 = 0.000023$

Sum up to 5 terms $s \simeq s_5 = -0.098785$. Adding 6th term 0.000023 does not affect the fourth decimal place o the sum. Therefore sum = -0.0988

Ex4(book-34). Test the convergence of $\sum_{n=2}^{\infty} (-1)^{n-1} \frac{(\ln n)^p}{n}.$

The series is alternating with $b_k = \frac{(\ln k)^p}{k}$

1. Check if the series is decreasing: We can write

$$f(x) = \frac{(\ln x)^p}{x} \text{ and } f'(x) = \frac{(\ln x)^{p-1}(p-\ln x)}{x^2} < 0 \text{ If } (p-\ln x) \text{ is } < 0 \Rightarrow x > e^p. \text{ It}$$

means we can find x (depending on p) where the series will start decreasing. 2. We have to show $\lim_{k \to \infty} b_k = 0$

(a) If $p \le 0$, $\lim_{n \to \infty} b_k = \lim_{k \to \infty} \frac{|\ln k|^p}{k}$ will be 0, since ln k will be in the numerator.

(b) If p > 0. We can apply Hospital Rule and differentiate the numerator and denominator as many as times as power of ln x is positive. Once it becomes negative, the ln x will go to numerator and the limit will become 0.

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{(\ln x)^p}{x}$$

= $\lim_{x \to \infty} \frac{p(\ln x)^{p-1}}{x}$
= $\lim_{x \to \infty} \frac{p(p-1)(\ln x)^{p-2}}{x} = \lim_{x \to \infty} \frac{p(p-1)(p-2)(\ln x)^{p-2}}{x}$

Finally ln x wil go in denominator and the limit will be zero. \rightarrow CONVERGENT