11.4 Comparison Tests

The comparison test is applied to know the convergence of $\sum a_n$ with the help of another series $\sum b_n$:

Comparison Test: Suppose $\sum a_n$ and $\sum b_n$ are series of **positive terms**

- 1. If $\sum b_n$ is convergent and $a_n \le b_n$ for all, then $\sum a_n$ is also convergent Example: Let $\sum a_n = \sum \frac{1}{2^n + 1}$ and $\sum b_n = \sum \frac{1}{2^n}$. Since $\sum b_n$ is convergent and $\frac{1}{2^n + 1} < \frac{1}{2^n} \rightarrow \sum a_n$ is also convergent.
- 2. If $\sum b_n$ is divergent and $a_n \ge b_n$ for all, then $\sum a_n$ is also divergent Example: Let $\sum a_n = \sum \frac{\ln n}{n}$ and $\sum b_n = \sum \frac{1}{n}$. Since $\sum b_n$ is divergent and $\frac{\ln n}{n} > \frac{1}{n}$ (n>/3) $\rightarrow \sum a_n$ is also divergent.

Limit Comparison Test: Suppose $\sum a_n$ and $\sum b_n$ are series of **positive terms** If $\lim_{n \to \infty} \frac{a_n}{b_n} = c$ where c is finite and c>0, then either both or convergent or both are divergent.

Example:
$$\sum a_n = \sum \frac{1}{2^n + 1}$$
 and let $\sum b_n = \sum \frac{1}{2^n}$, $\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{2^n}{2^n + 1} = \lim_{n \to \infty} \frac{1}{\left(1 + \frac{1}{2^n}\right)} = 1 > 0$

Since $\sum b_n$ is convergent $\rightarrow \sum a_n$ is also convergent.

Example: $\sum a_n = \sum \frac{2n^2 + 3n}{\sqrt{5 + n^5}}$ and let $\sum b_n = \sum \frac{2n^2}{n^{5/2}} = \sum \frac{2}{n^{1/2}}$, $\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{n^2(2 + 3/n)}{n^{5/2}\sqrt{\frac{5}{n^5} + 1}} \cdot \frac{n^{1/2}}{2} = \frac{2 + 0}{2(\sqrt{0 + 1})} = 1$. Since $\sum b_n$ is divergent p-series, $\sum a_n$ is

also divergent.

Determine the convergence/ divergence of

Ex1(Book-6):
$$\sum a_n = \sum_{n=2}^{\infty} \frac{1}{n - \sqrt{n}}$$

Let $\sum b_n = \sum \frac{1}{n}$, We can see that $a_n > b_n$ for n > 2. Since $\sum b_n$ is divergent (Divergent Harmonic Series) $\rightarrow \sum a_n$ is divergent.

Ex2(Book-15):
$$\sum a_n = \sum_{n=1}^{\infty} \frac{2 + (-1)^n}{n\sqrt{n}}$$

Select $\sum b_n = \sum \frac{3}{n\sqrt{n}}$. Since $\frac{2+(-1)^n}{n} \le \frac{3}{n\sqrt{n}}$ for all n, and $\sum b_n$ is convergent geometric series ($|\mathbf{r}|=1/3$), $\rightarrow \sum a_n$ is convergent.

Ex2(Book-28):
$$\sum a_n = \sum_{n=1}^{\infty} \frac{2n^2 + 7n}{3^n (n^2 + 5n - 1)}$$

Select $\sum b_n = \sum \frac{1}{3^n}$.

Apply Limit Convergence Test $\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{2n^2 + 7n}{n^2 + 5n - 1} = \lim_{n \to \infty} \left(\frac{2 + 7/n}{1 + 5/n - 1/n^2} \right) = 2 > 0$ Since $\sum b_n$ is convergent geometric series ($|\mathbf{r}|=1/3$), $\rightarrow \sum a_n$ is convergent.

Ex2(Book-37): The meaning of the decimal representation of a number $0.d_1d_2d_3d_{4\dots} = \frac{d_1}{10} + \frac{d_2}{10^2} + \frac{d_3}{10^3} + \frac{d_4}{10^4} + \dots = \sum_{n=1}^{\infty} \frac{d_n}{10^n}$

Show that the series always converges.

Let $\sum b_n = \frac{9}{10^n}$ The nth term $\frac{d_n}{10^n} \le \frac{9}{10^n}$ fro each n=1,2,3,4,...

Since $\sum b_n = \frac{9}{10^n}$ is convergent geometric series $(|r| = \frac{1}{10}) \rightarrow \sum a_n = \sum \frac{d_n}{10^n}$ is convergent.