
11.4 Comparison Tests 
 
The comparison test is applied to know the convergence of na∑  with the help of another 
series nb∑  : 
 
Comparison Test: Suppose na∑  and nb∑  are series of positive terms 

1. If nb∑  is convergent and  n na b≤   for all, then  na∑  is also convergent 

 Example: Let na∑ = 1
2 1n∑
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 and nb∑ = 1
2n∑  . Since  nb∑  is convergent and  
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   na∑  is also convergent. 

 
2. If nb∑  is divergent and  n na b≥   for all, then  na∑  is also divergent 

 Example: Let na∑ = ln n
n
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∑  . Since  nb∑  is divergent and  

 ln 1n
n n

>  ( n>/3)   na∑  is also divergent. 

 
Limit Comparison Test: Suppose na∑  and nb∑  are series of positive terms 

If lim  where c is finite and c>0n
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Since nb∑  is convergent  na∑  is also convergent. 
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. Since nb∑  is divergent p-series, na∑  is 

also divergent. 
 
 
Determine the convergence/ divergence of 
 

Ex1(Book-6): na∑ =
2
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Let  nb∑ = 1
n

∑  , We can see that for n>2n na b> . Since nb∑  is divergent (Divergent 

Harmonic Series)  na∑  is divergent. 
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Select  nb∑ = 3
n n
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≤  for all n, and nb∑  is convergent geometric 

series (|r|=1/3),,  na∑  is convergent. 
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Select  nb∑ = 1
3n∑ .  

Apply Limit Convergence Test 
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 Since  nb∑  is convergent geometric series (|r|=1/3),  na∑  is convergent. 
 
Ex2(Book-37): The meaning of the decimal representation of a number 
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Show that the series always converges. 
 

Let 9  
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convergent. 
 


