11.4 Comparison Tests

The comparison test is applied to know the convergence of $\sum a_{n}$ with the help of another series $\sum b_{n}$:

Comparison Test: Suppose $\sum a_{n}$ and $\sum b_{n}$ are series of positive terms

1. If $\sum b_{n}$ is convergent and $a_{n} \leq b_{n}$ for all, then $\sum a_{n}$ is also convergent Example: Let $\sum a_{n}=\sum \frac{1}{2^{n}+1}$ and $\sum b_{n}=\sum \frac{1}{2^{n}}$. Since $\sum b_{n}$ is convergent and $\frac{1}{2^{n}+1}<\frac{1}{2^{n}} \rightarrow \sum a_{n}$ is also convergent.
2. If $\sum b_{n}$ is divergent and $a_{n} \geq b_{n}$ for all, then $\sum a_{n}$ is also divergent Example: Let $\sum a_{n}=\sum \frac{\ln n}{n}$ and $\sum b_{n}=\sum \frac{1}{n}$. Since $\sum b_{n}$ is divergent and $\frac{\ln n}{n}>\frac{1}{n}(\mathrm{n}>/ 3) \rightarrow \sum a_{n}$ is also divergent.

Limit Comparison Test: Suppose $\sum a_{n}$ and $\sum b_{n}$ are series of positive terms If $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=c$ where c is finite and $\mathrm{c}>0$, then either both or convergent or both are divergent.

Example: $\sum a_{n}=\sum \frac{1}{2^{n}+1}$ and let $\sum b_{n}=\sum \frac{1}{2^{n}}, \lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{2^{n}}{2^{n}+1}=\lim _{n \rightarrow \infty} \frac{1}{\left(1+\frac{1}{2^{n}}\right)}=1>0$
Since $\sum b_{n}$ is convergent $\rightarrow \sum a_{n}$ is also convergent.

Example: $\sum a_{n}=\sum \frac{2 n^{2}+3 n}{\sqrt{5+n^{5}}}$ and let $\sum b_{n}=\sum \frac{2 n^{2}}{n^{5 / 2}}=\sum \frac{2}{n^{1 / 2}}$,
$\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{n^{2}(2+3 / n)}{n^{5 / 2} \sqrt{\frac{5}{n^{5}}+1}} \cdot \frac{n^{1 / 2}}{2}=\frac{2+0}{2(\sqrt{0+1})}=1$. Since $\sum b_{n}$ is divergent p-series, $\sum a_{n}$ is also divergent.

Determine the convergence/ divergence of
$\operatorname{Ex} 1\left(\right.$ Book-6): $\sum a_{n}=\sum_{n=2} \frac{1}{n-\sqrt{n}}$

Let $\sum b_{n}=\sum \frac{1}{n}$, We can see that $a_{n}>b_{n}$ for $\mathrm{n}>2$. Since $\sum b_{n}$ is divergent (Divergent Harmonic Series) $\rightarrow \sum a_{n}$ is divergent.
$\operatorname{Ex2}\left(\right.$ Book-15): $\sum a_{n}=\sum_{n=1} \frac{2+(-1)^{n}}{n \sqrt{n}}$
Select $\sum b_{n}=\sum \frac{3}{n \sqrt{n}}$. Since $\frac{2+(-1)^{n}}{n} \leq \frac{3}{n \sqrt{n}}$ for all n, and $\sum b_{n}$ is convergent geometric series $(|r|=1 / 3),, \rightarrow \sum a_{n}$ is convergent.
$\operatorname{Ex2}$ (Book-28): $\sum a_{n}=\sum_{n=1} \frac{2 n^{2}+7 n}{3^{n}\left(n^{2}+5 n-1\right)}$
Select $\sum b_{n}=\sum \frac{1}{3^{n}}$.
Apply Limit Convergence Test $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{2 n^{2}+7 n}{n^{2}+5 n-1}=\lim _{n \rightarrow \infty}\left(\frac{2+7 / n}{1+5 / n-1 / n^{2}}\right)=2>0$
Since $\sum b_{n}$ is convergent geometric series $(|r|=1 / 3), \rightarrow \sum a_{n}$ is convergent.
Ex2(Book-37): The meaning of the decimal representation of a number
$0 . d_{1} d_{2} d_{3} d_{4} \ldots=\frac{d_{1}}{10}+\frac{d_{2}}{10^{2}}+\frac{d_{3}}{10^{3}}+\frac{d_{4}}{10^{4}}+\ldots \ldots . .=\sum \frac{d_{n}}{10^{n}}$
Show that the series always converges.
Let $\sum b_{n}=\frac{9}{10^{n}}$
The nth term $\frac{d_{n}}{10^{n}} \leq \frac{9}{10^{n}}$ fro each $n=1,2,3,4, \ldots$
Since $\sum b_{n}=\frac{9}{10^{n}}$ is convergent geometric series $\left(|r|=\frac{1}{10}\right) \rightarrow \sum a_{n}=\sum \frac{d_{n}}{10^{n}}$ is convergent.

