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Abstract. In the present paper, we introduce the concept of η -cocoer-
civity of a map and develop some iterative schemes for finding the
approximate solutions of mixed variational-like inequalities. We use the
concept of η -cocoercivity to prove the convergence of the approximate
solutions to the exact solution of mixed variational-like inequalities.
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1. Introduction

Let H be a real Hilbert space whose inner product and norm are
denoted by 〈 · , · 〉 and �� · ��, respectively. Let K be a nonempty convex subset
of H. Let T, A: K→H and η : KBK→H be maps, and let f: K→� be a real-
valued function. We consider the mixed variational-like inequality problem
(in short, MVLIP), which is to find x* ∈ K such that

〈T (x*)AA(x*), η(y, x*)〉Cf (y)Af (x*)¤0, for all y ∈ K. (1)

A random version of this problem is considered by Ding (Ref. 1). When
f (x)G0 for all x ∈ K, problem (1) is studied by Noor (Ref. 2). When A ≡ 0,
problem (1) reduces to the following problem considered by Dien (Ref. 3)
and Noor (Ref. 4): Find x* ∈ K such that

〈T (x*), η(y, x*)〉Cf (y)Af (x*)¤0, for all y ∈ K. (2)
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When f (x)G0 for all x ∈ K and A ≡ 0, problem (1) becomes the variational-
like inequality problem studied in Refs. 5–9 with further applications. We
remark that optimization problems involving η-convex functions can be
formulated in the form of (MVLIP); see for example Refs. 3, 5, 7, 9.

To the best of our knowledge, most of the work on variational-like
inequalities has been done only in the direction of the existence of solutions
and their equivalence with optimization problems, mathematical program-
ming problems, and other problems in operations research; see for example
Refs. 1–9. Because of the applications of variational-like inequalities, it is
necessary to develop techniques to find their solutions. In this direction,
very few papers have appeared in the literature; see e.g. Refs. 2 and 4. This
paper is an effort in this direction.

For classical optimization problems, Cohen (Refs. 10–11) and Cohen
and Zhu (Ref. 12) introduced the so-called auxiliary problem principle as a
general framework to describe and analyze computational algorithms rang-
ing from gradient or subgradient algorithms to decomposition�coordination
algorithms. Cohen (Ref. 13) further extended this approach to the compu-
tation of solutions to variational inequalities; the Cohen approach is close
to the approach found in Ref. 14. Recently, Zhu and Marcotte (Ref. 15)
analyzed the convergence behavior of iterative schemes based upon the
auxiliary problem framework developed by Cohen (Ref. 13).

In the present paper, we introduce the concepts of η-cocoercivity, η-
strong monotonicity, and η-strong convexity of a map, which generalize the
definitions of cocoercivity (Ref. 16), strong monotonicity (Ref. 17), and
strong convexity (Ref. 17), respectively. We see that η-cocoercivity is an
intermediate concept that lies between η-strong monotonicity and η-mono-
tonicity. Following the approach of Cohen (Ref. 13) and that of Zhu and
Marcotte (Ref. 15), we develop some iterative schemes for finding the
approximate solutions of the (MVLIP) and prove that these approximate
solutions converge to the exact solution of the (MVLIP).

2. Preliminaries

Let K be a nonempty subset of H, and let F: K→H and η : KBK→H
be two maps. Then F is called:

(i) η-cocoercive, if there exists a constant αH0 such that

〈F (x)AF (y), η(x, y)〉¤α ��F (x)AF (y)��2, for all x, y ∈ K;

(ii) η-monotone, if

〈F (x)AF (y), η(x, y)〉¤0, for all x, y ∈ K;
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(iii) η-strongly monotone, if there exists a constant βH0 such that

〈F (x)AF (y), η(x, y)〉¤β ��xAy ��2, for all x, y ∈ K;

(iv) η-relaxed monotone, if there exists a constant ξ¤0 such that

〈F (y)AF (x), η(x, y)〉¤ξ ��xAy ��2, for all x, y ∈ K;

(v) Lipschitz continuous, if there exists a constant γH0 such that

��F (x)AF (y)��⁄γ ��xAy ��, for all x, y ∈ K.

When η(x, y)GxAy for all x, y ∈ K, then the definitions (i), (ii), (iii),
(iv) reduce to the definitions of cocoercivity (Ref. 16), monotonicity, strong
monotonicity (Ref. 17), and relaxed monotonicity, respectively.

A map η : KBK→H is called Lipschitz continuous, if there exists a
constant λH0 such that

��η(x, y)��⁄λ ��xAy ��, for all x, y ∈ K.

It is clear that every η-cocoercive map is η-monotone, but that the
converse is not true in general. Also, simple examples show that every η-
cocoercive map need not be η-strongly monotone.

We note that every η-cocoercive map is also Lipschitz continuous pro-
vided that η is Lipschitz continuous. Indeed,

α ��F (x)AF (y)��2⁄ 〈F (x)AF (y), η(x, y)〉

⁄ ��F (x)AF (y)�� · ��η(x, y)��

⁄λ ��F (x)AF (y)�� · ��xAy ��.

Hence,

��F (x)AF (y)��⁄ (λ �α )��xAy ��,

and thus F is Lipschitz continuous with constant λ �α .
Every η-strongly monotone and Lipschitz continuous map is η-co-

coercive, and it follows that η-cocoercivity is an intermediate concept that
lies between η-monotonicity and η-strong monotonicity. In general, every
η-monotone and Lipschitz continuous map need not be η-cocoercive.

A differentiable function h: K→� on a convex set K is called:

(i) η-convex (Ref. 18) if

h(y)Ah(x)¤ 〈h′ (x), η(y, x)〉, for all x, y ∈ K,

where h′(x) is the Fréchet derivative of h at x;
(ii) η-strongly convex if there exists a constant µH0 such that

h(y)Ah(x)A〈h′(x), η(y, x)〉¤ (µ�2)��xAy ��2, for all x, y ∈ K.
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It is easy to prove the following result.

Proposition 2.1. Let h be a differentiable η-strongly convex functional
on a convex subset K of H, and let η : KBK→H be a map such that
η(x, y)Cη(y, x)G0, for all x, y ∈ K. Then, h′ is η-strongly monotone.

A map F: K→� is called sequentially continuous at x0 (Ref. 19), if
F (xk )→F (x0) for all sequences xk→x0. F is called sequentially continuous
on K, if it is sequentially continuous at each of its points.

Lemma 2.1. Let η : KBK→H and h′ be sequentially continuous from
the weak topology to the weak topology and from the weak topology to the
strong topology, respectively. Then, the map g: K→�, defined as g(x)G
〈h′(x), η(y, x)〉 for each fixed y ∈ K, is also sequentially continuous from the
weak topology to the strong topology.

Proof. Let {xk} be a convergent (in the weak topology) sequence to
x, which will be denoted by xk % x. Then,

��h′ (xk )Ah′(x)��→0 and η(y, xk )% η(y, x).

Now,

�g(xk )Ag(x) �G�〈h′(xk ), η(y, xk )〉A〈h′(x), η(y, x)〉 �

G�〈h′(xk )Ah′(x), η(y, xk )〉C〈h′(x), η(y, xk )Aη(y, x)〉 �

⁄ ��h′(xk )Ah′(x)�� · ��η(y, xk )��C�〈h′(x), η(y, xk )Aη(y, x)〉 �.

Since each weakly convergent sequence is bounded, we have

�g(xk )Ag(x)�→0, as k→S.

Hence, g(x) is sequentially continuous from the weak topology to the strong
topology. �

For all B ⊆ H, we denote by conv(B ) the convex hull of B. A point-to-
set map G: H→2H is called a KKM map if, for every finite subset
{x1, x2, . . . , xk} of H,

conv({x1, x2, . . . , xk}) ⊆ *
k

IG1
G (xi ).

In the next section, we shall use the following result.

Lemma 2.2. See Ref. 20. Let B be an arbitrary nonempty set in a
topological vector space E, and let G: B→2E be a KKM map. If G(x) is
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closed for all x ∈ B and is compact for at least one x ∈ B, then
)x ∈ B G(x) ≠ ∅ .

3. Iterative Schemes

We introduce the following basic algorithm framework for (2). Let ρ
be a positive parameter and, for a given iterate xn , consider the auxiliary
problem that consists of finding xnC1 such that

〈 ρT (xn )Ch′(xnC1)Ah′(xn ), η(y, xnC1)〉Cρ[ f (y)Af (xnC1)]¤0,

for all y ∈ K, (3)

where h′(x) is the Fréchet derivative of a functional h: K→� at x.

Theorem 3.1. Let K be a nonempty convex and bounded subset of a
real Hilbert space H, and let f: K→� be a lower semicontinuous and convex
functional. Let T: K→H be η-cocoercive with constant α . Assume that:

(i) η : KBK→H is Lipschitz continuous with constant λ such that

(a) η(x, y)Cη(y, x)G0, for all x, y ∈ K,
(b) η(x, y)Gη(x, z)Cη(z, y), for all x, y, z ∈ K,
(c) η( · , · ) is affine in the first variable,
(d) for each fixed y ∈ K, x > η(y, x) is sequentially continuous

from the weak topology to the weak topology;

(ii) h: K→� is η-strongly convex with constant µ and its derivative h′
is sequentially continuous from the weak topology to the strong
topology;

(iii) there exists γH0 such that, for any x, y ∈ K,

h(y)Ah(x)A〈h′(x), η(y, x)〉⁄γ ��yAx��2.

Then, there exists a unique solution xnC1 ∈ K to (3). If

0FρF2αµ�λ 2, (4)

then the sequence {xn} generated by (3) converges to a solution of (2).

Proof. Existence of Solutions of Problem (3). For the sake of
simplicity, we write (3) as follows: Find x̄ ∈ K such that

〈 ρT (xn )Ch′(x̄)Ah′(xn ), η(y, x̄)〉Cρ[ f (y)Af (x̄)]¤0, for all y ∈ K.
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For each fixed n and each y ∈ K, we define

G (y)G{x ∈ K: 〈 ρT (xn )Ch′(x)Ah′(xn ), η(y, x)〉Cρ[ f (y)Af (x)]¤0}.

Note that, for each y ∈ K, G (y) is nonempty, since y ∈ G (y).
We shall prove that G is a KKM map. Suppose that there is a finite

subset {y1, y2, . . . , yk} of K and that α i¤0, for all iG1, 2, . . . , k with
∑k

iG1 α iG1 such that

x̂G ∑
k

iG1

α iyi ∉ G (yi ), for all i.

Then, we have

〈 ρT (xn )Ch′(x̂)Ah′(xn ), η(yi , x̂)〉Cρ[ f (yi )Af (x̂)]F0, for all i.

Therefore,

∑
k

iG1

α i 〈 ρT (xn )Ch′(x̂)Ah′(xn ), η(yi , x̂)〉Cρ ∑
k

iG1

α i [ f (yi )Af (x̂)]F0.

From condition (i)(a), we have

η(x, x)G0, for all x ∈ K.

By using the convexity of f and assumption (i)(c), we get

0G〈 ρT (xn )Ch′(x̂)Ah′(xn ), η(x̂, x̂)〉F0,

a contradiction. Hence, G is a KKM map.
Since G (y)w [the weak closure of G (y)] is a weakly closed subset of a

bounded set K ⊆ H, it is weakly compact. Hence, by Lemma 2.2,

)
y ∈ K

G (y)w ≠ ∅ .

Let

x̄ ∈ )
y ∈ K

G (y)w.

Then, there exists a sequence {xm} in G (y) such that xm % x̄; see Ref. 21,
pp. 93. Then,

〈 ρT (xn )Ch′(xm )Ah′(xn ), η(y, xm )〉¤ρ[ f (xm )Af (y)],

and hence,

lim
m→S

〈 ρT (xn )Ch′(xm )Ah′(xn ), η(y, xm )〉¤ρ lim
m→S

[ f (xm )Af (y)].
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Since f is convex and lower semicontinuous, it is lower semicontinuous in
the weak topology. Using Lemma 2.1, we get

〈 ρT (xn )Ch′(x̄)Ah′(xn ), η(y, x̄)〉¤ρ[ f (x̄)Af (y)].

Therefore, x̄ ∈ K is a solution of (3).
Uniqueness of Solution of Problem (3). Let x1 and x2 be two solutions

of (3). Then, for all y ∈ K,

〈 ρT (xn )Ch′(x1)Ah′(xn ), η(y, x1)〉Cρ[ f (y)Af (x1)]¤0, (5)

〈 ρT (xn )Ch′(x2)Ah′(xn ), η(y, x2)〉Cρ[ f (y)Af (x2)]¤0. (6)

Taking yGx2 in (5) and yGx1 in (6), and adding these inequalities, we get

ρ〈T (xn ), η(x2, x1)〉C〈h′(x1)Ah′(xn ), η(x2, x1)〉

Cρ〈T (xn ), η(x1, x2)〉C〈h′(x2)Ah′(xn ), η(x1, x2)¤0.

Since

η(x, y)Cη(y, x)G0, for all x, y ∈ K,

we have

〈h′(x1), η(x2, x1)〉¤A〈h′(x2), η(x1, x2)〉.

By using the η-strong convexity of h, we obtain

h(x2)Ah(x1)A(µ�2)��x1Ax2��2¤Ah(x1)Ch(x2)C(µ�2)��x2Ax1��2,

and therefore,

µ��x1Ax2��2⁄0.

Since µH0, we get x1Gx2. Hence, the solution of (3) is unique.
Let x* be any fixed solution of (2). For each y ∈ K, we define a

functional

Λ(y)Gh(x*)Ah(y)A〈h′(y), η(x*, y)〉.

By the η-strong convexity of h, we have

Λ(y)Gh(x*)Ah(y)A〈h′(y), η(x*, y)〉¤ (µ�2)��yAx*��2. (7)

From the η-strong convexity of h, assumption (i)(b), and (3) with yGx*,
we get

Λ(xn )AΛ(xnC1)

Gh(xnC1)Ah(xn )A〈h′(xn ), η(x*, xn )〉C〈h′(xnC1), η(x*, xnC1)〉
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Gh(xnC1)Ah(xn )A〈h′(xn ), η(x*, xnC1)〉

A〈h′(xn ), η(xnC1 , xn )〉C〈h′(xnC1), η(x*, xcnC1)〉

Gh(xnC1)Ah(xn )

A〈h′(xn ), η(xnC1, xn )〉C〈h′(xnC1)Ah′(xn ), η(x*, xnC1)〉

¤ (µ�2)��xnAxnC1��2C〈h′(xnC1)Ah′(xn ), η(x*, xnC1)〉

¤ (µ�2)��xnAxnC1��2Aρ〈T (xn ), η(x*, xnC1)〉Aρ[ f (x*)Af (xnC1)]

G(µ�2)��xnAxnC1��2

Cρ〈T (xn ), η(xnC1 , x*)〉Cρ[ f (xnC1)Af (x*)]. (8)

We set yGxnC1 in (2) and combine it with (8); we get

Λ(xn )AΛ(xnC1)¤ (µ�2)��xnAxnC1��2

Cρ〈T (xn ), η(xnC1 , x*)〉Aρ〈T (x*), η(xnC1 , x*)〉

G(µ�2)��xnAxnC1��2CQ.

Now,

QGρ〈T (xn )AT (x*), η(xnC1 , x*)〉

Gρ〈T (xn )AT (x*), η(xn , x*)〉Cρ〈T (xn )AT (x*), η(xnC1 , xn )〉

¤ρ[α ��T (xn )AT (x*)��2C〈T (xn )AT (x*), η(xnC1 , xn )〉]

¤ρ[−(1�4α )��η(xnC1 , xn )��2]

¤ (−ρλ 2�4α )��xnC1Axn ��2.

Therefore,

Λ(xn )AΛ(xnC1)¤ (1�2)(µAρλ 2�2α )��xnC1Axn ��2. (9)

If xnC1Gxn for some n, then xn is a solution of (2). Otherwise, it follows
from (4) that Λ(xn )AΛ(xnC1) is a nonnegative sequence, from which we
have

lim
n→S

��xnC1Axn ��G0.

Also from (7), we conclude that {Λ(xn )} is a decreasing sequence, and hence
{xn} must be a bounded sequence. It is easy to see that any cluster point of
{xn} is a solution of (2).

Now, let x̄ be any cluster point of {xn}, and let

Λ̄(xn )Gh(x̄)Ah(xn )A〈h′(xn ), η(x̄, xn )〉¤ (µ�2)��x̄Axn ��2. (10)
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By the above argument, we know that {Λ̄(xn )} is also a decreasing sequence;
by assumption (iii), we have

Λr (xn )⁄γ ��x̄Axn ��2,

from which it follows that

lim
n→S

Λ̄(xn )G0. (11)

Combining (10) and (11), we conclude that the sequence {xn} converges
to x̄. �

Remark 3.1. When η(y, x)GyAx for all x, y ∈ K, Theorem 3.1 is an
infinite-dimensional version of Theorem 3.2 in Ref. 15.

We now have the following basic algorithm framework for the
(MVLIP) (1).

Let ρ be a positive parameter and, for a given iterate xn , consider the
auxiliary (MVLIP) that consists of finding xnC1 such that

〈 ρ(T (xn )AA(xn ))Ch′(xnC1)Ah′(xn ), η(y, xnC1)〉

Cρ[ f (y)Af (xnC1)]¤0, for all y ∈ K, (12)

where h′(x) is the Fréchet derivative of a functional h: K→� at x.

Theorem 3.2. Let K be a nonempty convex and bounded subset of a
real Hilbert space H, and let f : K→� be a lower semicontinuous and convex
functional. Let T, A: K→H be two maps such that T is η-cocoercive with
constant α and A is η-relaxed monotone with constant ξ and Lipschitz
continuous with constant β. Assume that:

(i) η : KBK→H is Lipschitz continuous with constant λ such that

(a) η(x, y)Cη(y, x)G0, for all x, y ∈ K,
(b) η(x, y)Gη(x, z)Cη(z, y), for all x, y, z ∈ K,
(c) η( · , · ) is affine in the first variable,
(d) for each fixed y ∈ K, x > η(y, x) is sequentially continuous

from the weak topology to the weak topology;

(ii) h: K→� is η-strongly convex with constant µ, and its derivative
h′ is sequentially continuous from the weak topology to the strong
topology.

Then, there exists a unique solution xnC1 ∈ K to (12). If

0FρF2αµξ �λ 2(ξCαβ 2), (13)
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then the sequence {xn} generated by (12) converges to a solution of the
(MVLIP)(1).

Proof. The first part follows by replacing T with TAA in the proof
of the first part of Theorem 3.1.

Let x* be any fixed solution of (1). For each y ∈ K, we define a
functional

Λ(y)Gh(x*)Ah(y)A〈h′(y), η(x*, y)〉.

From the η-strong convexity of h, assumption (i)(b), and (12) with yGx*,
we get

Λ(xn)AΛ(xnC1)

Gh(xnC1)Ah(xn)A〈h′(xn), η(x*, xn)〉C〈h′(xnC1), η(x*, xnC1)〉

Gh(xnC1)Ah(xn)A〈h′(xn), η(x*, xnC1)〉

A〈h′(xn), η(xnC1 , xn )〉C〈h′(xnC1), η(x*, xnC1)〉

Gh(xnC1)Ah(xn )A〈h′(xn ), η(xnC1 , xn )〉

C〈h′(xnC1)Ah′(xn ), η(x*, xnC1)〉

¤ (µ�2)��xnAxnC1��2C〈h′(xnC1)Ah′(xn ), η(x*, xnC1)〉

¤ (µ�2)��xnAxnC1��2

Aρ〈T (xn )AA(xn ), η(x*, xnC1)〉Aρ[ f (x*)Af (xnC1)]

G(µ�2)��xnAxnC1��2

Cρ〈T (xn )AA(xn ), η(xnC1 , x*)〉Cρ[ f (xnC1)Af (x*)]. (14)

We set yGxnC1 in (1) and combine it with (14); we get

Λ(xn )AΛ(xnC1)

¤ (µ�2)��xnAxnC1��2Cρ〈T (xn )AA(xn ), η(xnC1 , x*)〉

Aρ〈T (x*)AA(x*), η(xnC1 , x*)〉

G(µ�2)��xnAxnC1��2CQ.

Now,

QGρ〈T (xn)AT (x*), η(xnC1 , x*)〉Aρ〈A(xn)AA(x*), η(xnC1 , x*)〉

Gρ〈T (xn )AT (x*), η(xn , x*)〉Cρ〈T (xn)AT (x*), η(xnC1 , xn)〉

Aρ〈A(xn )AA(x*), η(xn , x*)〉Aρ〈A(xn )AA(x*), η(xnC1 , xn )〉
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¤ρα ��T (xn )AT (x*)��2Cρ〈T (xn )AT (x*), η(xnC1 , xn )〉

Cρξ ��xnAx*��2Aρ ��A(xn )AA(x*)�� · ��η(xnC1 , xn )��

¤ρ[α ��T (xn )AT (x*)��2C〈T (xn )AT (x*), η(xnC1 , xn )〉]

Cρξ ��xnAx*��2Aρβλ ��xnAx*�� · ��xnC1Axn ��

¤ρ[−(1�4α )��η(xnC1 , xn )��2 ]

Cρξ ��xnAx*��2Aρβλ ��xnAx*�� · ��xnC1Axn ��

¤ (−ρλ 2�4α )��xnC1Axn ��2

Cρξ ��xnAx*��2Aρβλ ��xnAx*�� · ��xnC1Axn ��
Therefore,

Λ(xn )AΛ(xnC1)

¤ (1�2)(µAρλ 2�2α )��xnC1Axn ��2

Cρξ ��xnAx*��2Aρβλ ��xnAx*�� · ��xnC1Axn ��

¤A[ρ2β2λ 2�2(µAρλ 2�2α )]��xnAx*��2Cρξ ��xnAx*��2

¤ [ρξAρ2β2λ 2�2(µAρλ 2�2α )]��xnAx*��2. (15)

Condition (13) and inequality (15) show that the sequence {Λ(xn )} is strictly
decreasing (unless xnGx*) and is nonnegative by (7). Hence, it converges
to some number. Therefore, the difference of two successive terms of the
sequence goes to zero, and so the sequence {xn} converges strongly to x* as
n→S. �

Remark 3.2. The boundedness assumption on K can be replaced with
the following condition:

there exist a bounded subset C of K and y0∈ C such that, for any
x ∈ K \C,

〈 ρ(T (xn )AA(xn ))Ch′(x)Ah′(xn ), η(y0, x)〉Cρ( f (y0)Af (x))F0.

For further details, we refer to Ref. 22.

As Zhu and Marcotte noticed in Ref. 15, from a practical point of
view, the solution of the auxiliary (MVLIP) cannot be obtained in closed
form and a trade-off must be achieved between the amount of work spent
on solving the auxiliary problem and the accuracy of the corresponding
solution. More precisely, at step n, one can find an approximate solution of
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the auxiliary problem, that is, a point xnC1 ∈ K such that

〈 ρ(T (xn )AA(xn ))Ch′(xnC1)Ah′(xn ), η(y, xnC1)〉

Cρ[ f (y)Af (xnC1)]¤A(n , for all y ∈ K ′, (16)

where (nH0. If K is bounded, we let K ′GK. Otherwise, we define

K ′GK ∩ {x: ��x��⁄R},

where R is a suitably large constant. We note that such a number always
exists because {��xnAx*��} is bounded.

Theorem 3.3. Assume that all the conditions of Theorem 3.2 are satis-
fied, and let {(n} be a sequence such that

(n¤0 and lim
n→S

(nG0.

Then, the sequence {xn} generated by (16) converges to a solution of the
(MVLIP) (1).

Proof. From the proof of Theorem 3.2, we have

Λ(xn )AΛ(xnC1)¤θ��xnAx*��2C(n ,

where θG[ρξAρ2β2λ 2�2(µAρλ 2�2α )],

and

lim
n→S

(θ��xnAx*��2C(n )G0.

Now,

lim
n→S

θ��xnAx*��2G lim
n→S

[(θ��xnAx*��2C(n )A(n ]

G lim
n→S

(θ��xnAx*��2C(n )A lim
n→S

(n

G0,

and hence {xn} converges strongly to x*, a solution of the (MVLIP) (1). �

When

η(x, y)GxAy, for all x, y ∈ K,

assumption (iii) in Theorem 3.1 holds if h′ is Lipschitz continuous on K. In
this case, we have the following algorithm framework.

Let ρ be a positive parameter and, for a given iterate xn , consider the
auxiliary mixed variational inequality problem (in short, MVIP) that
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consists of finding xnC1 such that

〈 ρ(T (xn )AA(xn ))Ch′(xnC1)Ah′(xn ), yAxnC1〉

Cρ( f (y)Af (xnC1))¤0, for all y ∈ K, (17)

where h′(x) is the Fréchet derivative of a functional h: K→� at x.

Corollary 3.1. Let K be a nonempty convex and bounded subset of a
real Hilbert space H, and let f: K→� be a lower semicontinuous and convex
functional. Let T, A: K→H be two maps such that T is cocoercive with
constant α and A is relaxed monotone with constant ξ and Lipschitz con-
tinuous with constant β. Assume that h: K→� is strongly convex with
constant µ such that its derivative h′ is sequentially continuous from the
weak topology to the strong topology. Then, there exists a unique solution
xnC1 ∈ K to (17). If

0FρF2αµξ �(ξCαβ 2), (18)

then the sequence {xn} generated by (17) converges to a solution of the
following mixed variational inequality problem (MVIP): Find x* ∈ K such
that

〈T (x*)AA(x*), yAx*〉Cf (y)Af (x*)¤0, for all y ∈ K. (19)

Corollary 3.2. Let K be a nonempty convex and bounded subset of
�n, and let f: K→� be a lower semicontinuous and convex functional. Let
T, A: K→�n be two maps such that T is η-cocoercive with constant α and
A is η-relaxed monotone with constant ξ and Lipschitz continuous with
constant β. Assume that:

(i) η : KBK→�n is Lipschitz continuous with constant λ such that

(a) η(x, y)Cη(y, x)G0, for all x, y ∈ K,
(b) η(x, y)Gη(x, z)Cη(z, y), for all x, y, z ∈ K,
(c) η( · , · ) is affine in the first variable,
(d) for each y ∈ K, x > η(y, x) is continuous on K;

(ii) h: K→� is continuously differentiable and η-strongly convex with
constant µ.

Then, there exists a unique solution xnC1 ∈ K to (12). If (13) holds, then the
sequence {xn} generated by (12) converges to a solution of the (MVLIP)
(1).

Corollary 3.3. Let K be a nonempty convex and bounded subset of
�n, and let f: K→� be a lower semicontinuous and convex functional. Let
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T, A: K→�n be two maps such that T is cocoercive with constant α and A
is η-relaxed monotone with constant ξ and Lipschitz continuous with con-
stant β. Assume that h: K→� is continuously differentiable and strongly
convex with constant µ. Then, there exists a unique solution xnC1 ∈ K to
(17). If (18) holds, then the sequence {xn} generated by (17) converges to a
solution of the (MVLIP) (19).
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