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Abstract—In this paper, we consider the generalized nonlinear variational inclusions for nonclosed
and nonbounded valued operators and define an iterative algorithm for finding the approximate
solutions of this class of variational inclusions. We also establish that the approximate solutions
obtained by our algorithm converge to the exact solution of the generalized nonlinear variational
inclusion. c© 2000 Elsevier Science Ltd. All rights reserved.
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1. INTRODUCTION

In 1994, Hassouni and Moudafi [1] introduced a perturbed method for solving a new class of vari-
ational inequalities, known as variational inclusions. Recently, this class of variational inclusions
has been extended and generalized for multivalued maps by Huang [2]. By using Hausdorff met-
ric, he constructed an algorithm for finding the approximate solutions of his variational inclusion
and proved the convergence of iterative sequences generated by this algorithm. Yao [3] solved a
variational inequality involving the single-valued relaxed Lipschitz operators by using an iterative
algorithm. Verma [4] generalized single-valued relaxed Lipschitz operators for multivalued maps
and studied the solvability of a generalized variational inequality involving single-valued strongly
monotone and multivalued relaxed Lipschitz operators. In this paper, we consider the generalized
nonlinear variational inclusions with nonclosed and nonbounded valued operators and define an
iterative algorithm, without using Hausdorff metric, for finding the approximate solutions of this
class of variational inclusions. By the definition of multivalued relaxed Lipschitz operator, we
prove that the approximate solutions obtained by this iterative algorithm converge to the exact
solution of our variational inclusion.
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2. PRELIMINARIES

Let H be a real Hilbert space whose inner product and norm are denoted by 〈·, ·〉 and ‖ · ‖,
respectively. Let ∂ϕ denote the subdifferential of a proper, convex, and lower semicontinuous
function ϕ : H→ R∪{+∞}. Given a multivalued map T : H→ 2H, where 2H denotes the family
of nonempty subsets of H, and f, g : H→ H be single-valued maps with Im g ∩ dom (∂ϕ) 6= ∅, we
consider the following generalized nonlinear variational inclusion problem (GNVIP).

Find x ∈ H and w ∈ T (x) such that g(x) ∩ dom (∂ϕ) 6= ∅ and

〈g (x)− f (w) , y − g (x)〉 ≥ ϕ (g (x))− ϕ (y) , ∀ y ∈ H. (2.1)

Inequality (2.1) is called the generalized nonlinear variational inclusion.
If ϕ ≡ IK , the indicator function of a closed convex set K in H defined by

IK (x) =
{

0, x ∈ K,
+∞, otherwise,

then GNVIP reduces to the following generalized variational inequality problem (GVIP) consid-
ered by Verma [4].

Find x ∈ H and w ∈ T (x) such that g(x) ∈ K and

〈g (x)− f (w) , y − g (x)〉 ≥ 0, ∀ y ∈ K. (2.2)

Definition 2.1. (See [5,6].) If G : H → 2H is a maximal monotone multivalued map, then for

any fixed α > 0, the mapping JGα : H→ H defined by

JGα (x) = (I + αG)−1 (x) , ∀x ∈ H

is said to be the resolvent operator of index α of G, where I is the identity mapping on H.

Furthermore, the resolvent operator JGα is single-valued and nonexpansive, that is,∥∥JGα (x)− JGα (y)
∥∥ ≤ ‖x− y‖ , ∀x, y ∈ H.

Since the subdifferential ∂ϕ of a proper, convex, and lower semicontinuous function ϕ : H →
R∪ {+∞} is a maximal monotone multivalued map, it follows that the resolvent operator J∂ϕα
of index α of ∂ϕ is given by

J∂ϕα (x) = (I + α∂ϕ)−1 (x) , ∀x ∈ H.

3. ITERATIVE ALGORITHM

In this section, we first establish the equivalence of the generalized nonlinear variational in-
clusion (2.1) to a nonlinear equation. Then we define an iterative algorithm for finding the
approximate solutions of GNVIP.

Lemma 3.1. Elements x ∈ H and w ∈ T (x) are solutions of GNVIP if and only if x and w satisfy

the following relation:

g (x) = J∂ϕα (g (x)− α (g (x)− f (w))) , (3.1)

where α > 0 is a constant, J∂ϕα = (I + α∂ϕ)−1 is the resolvent operator of index α of ∂ϕ and I

is the identity operator on H.

Proof. From the definition of the resolvent operator J∂ϕα of index α of ∂ϕ and relation (3.1),
we have

g (x) = J∂ϕα (g (x)− α (g (x)− f (w)))

= (I + α∂ϕ)−1 (g (x)− α (g (x)− f (w)))
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and
g (x)− α (g (x)− f (w)) ∈ g (x) + α∂ϕ (g (x)) ,

which gives f(w)− g(x) ∈ ∂ϕ(g(x)). From the definition of ∂ϕ, we have

ϕ (y) ≥ ϕ (g (x)) + 〈f (w)− g (x) , y − g (x)〉 , ∀ y ∈ H.

Thus, x and w are solutions of GNVIP.

Remark 3.1. From Lemma 3.1, we see that GNVIP is equivalent to the fixed-point problem of
type

x ∈ F (x) , (3.2)

where F (x) = x− g(x) + J∂ϕα (g(x)− α(g(x)− f(w))).
Based on (3.1) and (3.2), we have the following iterative algorithm.

Algorithm 3.1. Given x0 ∈ H, compute xn+1 by the rule

xn+1 = xn − g (xn) + J∂ϕα (g (xn)− α (g (xn)− f (wn))) , (3.3)

where α > 0 is a constant.

4. CONVERGENCE THEOREM

We apply the Algorithm 3.1 to prove the following convergence theorem.

Theorem 4.1. Let g : H→ H be strongly monotone and Lipschitz continuous with correspond-

ing constants r ≥ 0 and s > 0, respectively, and f : H→ H be Lipschitz continuous with constant

t > 0. Let T : H → 2H be relaxed Lipschitz with respect to f and Lipschitz continuous with

corresponding constants k ≤ 0 and m ≥ 1, respectively. Then the sequences {xn} and {wn}
generated by Algorithm 3.1 with x0 ∈ H, w0 ∈ T (x0), and

∥∥∥∥α− 1− k + p (1− 2p)
1− 2k +m2t2 − p2

∥∥∥∥ <
√

(1− k + p (1− 2p))2 − 4p (1− p) (1− 2k − p2 + t2m2)

1− 2k +m2t2 − p2
, (4.1)

where 1 − k > p(2p − 1) +
√

4p(1− p)(1− 2k − p2 + t2m2) and 1 − 2k + m2t2 > p2 for p =√
(1− 2r + s2) < 1/2, converge to x and w, respectively, the solution of GNVIP.

We require the following definitions to achieve the main result.

Definition 4.1. A mapping g : H→ H is said to be

(i) strongly monotone, if there exists a constant r ≥ 0 such that

〈g (x1)− g (x2) , x1 − x2〉 ≥ r ‖x1 − x2‖2 , ∀x1, x2 ∈ H;

(ii) Lipschitz continuous, if there exists a constant s > 0 such that

‖g (x1)− g (x2)‖ ≤ s ‖x1 − x2‖ , ∀x1, x2 ∈ H.

Definition 4.2. Let f : H→ H be a map. A multivalued map T : H→ 2H is said to be relaxed

Lipschitz with respect to f , if for given k ≤ 0,

〈f (w1)−f (w2) , x1−x2〉 ≤ k ‖x1−x2‖2 , ∀w1 ∈ T (x1) , w2 ∈ T (x2) , and ∀x1, x2 ∈ H.

The multivalued map T is called Lipschitz continuous [4], if for m ≥ 1,

‖w1 − w2‖ ≤ m ‖x1 − x2‖ , ∀w1 ∈ T (x1) , w2 ∈ T (x2) , and ∀x1, x2 ∈ H.
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Proof of Theorem 4.1. From (3.3), we have

‖xn+1 − xn‖ =
∥∥xn − xn−1 − (g (xn)− g (xn−1)) + J∂ϕα (h (xn))− J∂ϕα (h (xn−1))

∥∥ , (4.2)

where h(xn) = g(xn)− α(g(xn)− f(wn)). Since the resolvent operator J∂ϕα is nonexpansive, we
have∥∥J∂ϕα (h (xn))− J∂ϕα (h (xn−1))

∥∥ ≤ ‖h (xn)− h (xn−1)‖
= ‖(1− α) (g (xn)− g (xn−1)) + α (f (wn)− f (wn−1))‖
≤ (1− α) ‖xn − xn−1 − (g (xn)− g (xn−1))‖

+ ‖(1− α) (xn − xn−1) + α (f (wn)− f (wn−1))‖ .

(4.3)

From (4.2) and (4.3), we get

‖xn+1 − xn‖ ≤ ‖xn − xn−1 − (g (xn)− g (xn−1))‖+
∥∥J∂ϕα (h (xn))− J∂ϕα (h (xn−1))

∥∥
≤ ‖xn − xn−1 − (g (xn)− g (xn−1))‖

+ (1− α) ‖xn − xn−1 − (g (xn)− g (xn−1))‖
+ ‖(1− α) (xn − xn−1) + α (f (wn)− f (wn−1))‖

= (2− α) ‖xn − xn−1 − (g (xn)− g (xn−1))‖
+ ‖(1− α) (xn − xn−1) + α (f (wn)− f (wn−1))‖ .

(4.4)

By Lipschitz continuity and strong monotonicity of g, we obtain

‖xn − xn−1 − (g (xn)− g (xn−1))‖2 ≤
(
1− 2r + s2

)
‖xn − xn−1‖2 . (4.5)

Since T is Lipschitz continuous and relaxed Lipschitz with respect to f and f is Lipschitz con-
tinuous, we have

‖(1− α) (xn − xn−1) + α (f (wn)− f (wn−1))‖2

= (1− α)2 ‖xn − xn−1‖2 + 2α (1− α) 〈f (wn)− f (wn−1) , xn − xn−1〉
+ α2 ‖f (wn)− f (wn−1)‖2

≤ (1− α)2 ‖xn − xn−1‖2 + 2α (1− α) k ‖xn − xn−1‖2 + α2t2m2 ‖xn − xn−1‖2

=
(

(1− α)2 + 2α (1− α) k + α2t2m2
)
‖xn − xn−1‖2 .

By combining (4.4)–(4.6), we obtain

‖xn+1 − xn‖ ≤ θ ‖xn − xn−1‖ ,

where θ = [(2− α)p+ {(1− α)2 + 2α(1− α)k + α2t2m2}1/2] and p = (1− 2r + s2)1/2. It follows
from (4.1) that θ < 1, and consequently, for all q ∈ N,

‖xn+q − xn‖ ≤
(

θn

1− θ

)
‖x1 − x0‖ .

Therefore, {xn} is a Cauchy sequence. Since H is complete, there exists an x ∈ H such that
xn → x. Now the Lipschitz continuity of T implies that wn → w. This completes the proof.
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