KING FAHD UNIVERSITY OF PETROLEUM \& MINERALS DEPARTMENT OF MATHEMATICAL SCIENCES DHAHRAN, SAUDI ARABIA

STAT 211 (B): BUSINESS STATISTICS I

Semester 052
Major Exam \#2
Wednesday April 26, 2006

Please circle your instructor's name:
Dr. Walid Abu-Dayyeh
Dr. Mohammad Omar
Mr. Marwan Al-Momani

Name:
ID\#
Section:
Serial:

Question No	Full Marks	Marks Obtained
1	10	
2	13	
3	10	
4	15	
5	5	
6	12	
Total	65	

Question .1(4+6=10-Points)

Ahmed followed stock exchanges over the past 50 days. In particular, he recorded price exchanges for two stocks, Al-Kahraba' and Safco. He partially constructed the following table.

		Safco price \downarrow			Total						
		Decrease	Unchanged	Increase							
Al-Kahraba price \rightarrow	Decrease	50	70	70	190						
	Unchanged	10	50	40	100						
	Total		Increase	60	80	70					
210											
							120	200	180	500	

With this method, he partially completed the following table to study the behavior of the two stocks.

		Safco \downarrow			Total	
		Decrease	Unchanged	Increase		
Al-Kahraba \rightarrow	Decrease	0.10	0.14	0.14	0.38	
	Unchanged	0.02	0.10	0.08	0.20	
	Total		Increase	0.12	0.16	0.14
		0.42				

With this partially constructed table, find the following:
a. What is the probability that Safco' stock price decreases given that Al-Kahraba' price decreases?

$$
\begin{aligned}
P(\text { Safco } & \text { Price decrease } \mid \text { Al-Kahraba' decrease })=\frac{P(\text { boat decrease })}{P(\text { Al-Kalrabai decrease })} \quad(1 p t) \\
& =\frac{0.10}{0.38} \\
= & 0.263158
\end{aligned}
$$

b. Let A: Safco decreases and B: Al-Kahraba’ stock decreases.
I. Are these two events mutually exclusive? Why?

$$
\begin{array}{ll}
\text { No (1pt). } & P(\mathrm{~A} \cap \mathrm{~B})=0.10 \\
& P(\mathrm{~A} \cap \mathrm{~B}) \neq 0 . \text { So, A and B are NOT mutually exclusive }(1 \mathrm{pt})
\end{array}
$$

II. Are these two events independent? Why?

$$
\begin{aligned}
& P(\mathrm{~A} \cap \mathrm{~B})=0.10 \\
& P(\mathrm{~A})=0.38 \\
& P(\mathrm{~B})=0.24
\end{aligned}
$$

No.(1pt)
$P(\mathrm{~A}) P(\mathrm{~B})=0.38(0.24)$
$=0.0912$
$P(\mathrm{~A} \cap \mathrm{~B}) \neq P(\mathrm{~A}) P(\mathrm{~B})(1 \mathrm{pt})$. So A and B are not independent.
III. Find $P(A \cup B)$

$$
\begin{align*}
P(\mathrm{~A} \cup \mathrm{~B}) & =P(\mathrm{~A})+P(\mathrm{~B})-P(\mathrm{~A} \cap \mathrm{~B}) \\
& =0.38+0.24-0.10 \tag{1pt}\\
& =0.52 \tag{1pt}
\end{align*}
$$

Question . $2(1+2+4+2+4=13-$ Points $)$

The following distribution of number of daily customer complaints was observed for the past year at Giant Supermarket

\mathbf{X}	0	1	2	3	4	5
$\mathbf{P}(\mathbf{X})$	0.15	0.30	0.20	0.15	0.14	0.06

a. What type of probability distribution is represented above?

Discrete Probability Distribution
b. Find the probability that on a given day, there will be at most one customer complaint?

$$
\begin{aligned}
P(x \leq 1) & =P(x=0)+P(x=1) \\
& =0.15+0.30 \quad(1 \mathrm{pt}) \\
& =0.45 \quad(1 \mathrm{pt})
\end{aligned}
$$

c. Find the probability that on a given day, there will be between 2 and 4 complaints (inclusive) given that there is at most one complaint.

$$
\begin{aligned}
P(2 \leq x \leq 4 \mid x \leq 3) & =\frac{P(2 \leq x \leq 4 \text { and } x \leq 3)}{P(x \leq 3)} \\
& =\frac{P(2 x \leq \leq 3)}{1-P(x>3)}=\frac{P(x=2)+P(x-3)}{1-(P(x) 4)+P(x=5))} \\
& =\frac{0.200+15}{1-(0.140 .0 .06)} \quad(2 p t) \\
& =\frac{0.35}{0.80} \\
& =0.4375
\end{aligned}
$$

d. Find the expected number of customer complaints?

$$
\begin{aligned}
E[x] & =\sum x P(x) \\
& =0(0.15)+1(0.30)+2(0.20)+3(0.15)+4(0.14)+5(0.06) \quad(1 \mathrm{pt}) \\
& =2.01 \quad(1 \mathrm{pt})
\end{aligned}
$$

e. Find the standard deviation of customer complaints?

(1pt) This method					
X	$\mathrm{P}(\mathrm{X})$	XP(X)	$\mathrm{X}^{2} \mathrm{P}(\mathrm{X})$	or	$(X-E[X])^{2} P(X)$
0	0.15	0.00	0.00		0.606015
1	0.30	0.30	0.30		0.306030
2	0.20	0.40	0.80		0.000020
3	0.15	0.45	1.35		0.147015
4	0.14	0.56	2.24		0.554414
5	0.06	0.30	1.50		0.536406
	1.00	2.01	6.19		2.1499
(1pt) (or 1pt)					
$\begin{array}{rlr\|} \sigma & =\sqrt{\sum x^{2} P(x)-(E[X])^{2}} \\ & =\sqrt{6.19-(2.01)^{2}} \\ & =\sqrt{2.1499} & \\ & =1.46625 & (1 \mathrm{pt}) \\ \end{array}$					

Question .3(3+4+3=10-Points)

The life time of batteries manufactured by a factory has an exponential distribution with mean 360 hours. A battery is selected randomly from the product of the factory. Then:
a. Find the probability that the battery will work at most 320 hours.

$$
\begin{aligned}
P(x \leq 320) & =P(0 \leq x \leq 320) \\
= & 1-e^{-\lambda(320)} \quad \text { but what is } \lambda \text { ? exponential mean }=1 / \lambda \\
& 360 \mathrm{hr}=1 / \lambda . \text { So, } \lambda=1 / 360(1 \mathrm{pt})
\end{aligned}
$$

b. Find the probability that the battery will work more than 420 hours given that it has worked more than 390 hours.

$$
\begin{aligned}
& P(x>420 \mid x>390)=\frac{P(x>420 \text { and } x>390)}{P(x>390)} \quad(1 p t) \\
& =\frac{1-\left(1-e^{-\lambda 200}\right)}{1-\left(1-e^{-3300}\right)} \\
& =\frac{e^{-4201360}}{e^{-301 / 360}} \quad \text { (1pt) } \\
& =\frac{0.31403}{0.338465} \quad(1 p t) \\
& =0.920044 \quad(1 p t)
\end{aligned}
$$

c. Find the median of the life time of the battery.

Exponential is skewed so mean is not median

$$
\begin{aligned}
& P(0 \leq x \leq \text { median })=0.50 \quad(1 p t) \\
& 1-e^{-\lambda(\text { median })}=0.50 \\
& 1-e^{- \text {median } / 360}=0.50 \\
& e^{- \text {median } / 360}=0.50 \\
& \frac{- \text { median }}{360}=\ln (0.50) \\
& \text { Median }=-360 \ln (0.50) \\
& \quad=249.533
\end{aligned}
$$

Question .4(3+4+4+4=15-Points)

At KFUPM the distribution of student after-class daily studying time has been known to follow a normal distribution with a mean of $\mathbf{1 1 0}$ minutes and a standard deviation of $\mathbf{3 6}$ minutes.
a. A KFUPM student is randomly selected, what is the probability that he studies less than 126 minutes?

$$
\begin{aligned}
P(\overline{x<126}) & =P\left(z<\frac{126-110}{36}\right) \\
& =P\left(z<\frac{16}{36}\right) \\
& =P(z<0.4444) \quad(1 p t) \\
& \simeq P(z<0)+P(0<z<0.44) \\
& =0.5000+0.1700 \quad \text { From the std Normal table (1pt) }) \\
& =0.6700 \quad(1 p t)
\end{aligned}
$$

b. If students who typically obtain A+ grades in their courses study at least 184 minutes daily, what is the percentage of these KFUPM students?

$$
\begin{aligned}
P(x>184) & =P\left(z>\frac{184-110}{36}\right) \quad(1 p t) \\
& =P(z>2.055556) \simeq P(z>2.06) \quad(1 p t) \\
& =1-P(z>2.06)=1-[P(z<0)+P(0<z<2.06)] \\
& =1-(0.5000+0.4803) \quad \text { From the std Normal table }(1 p t) \\
& =1-0.9803 \\
& =0.0197 \quad(1 p t)
\end{aligned}
$$

1.97% of KFUPM students
c. Find x where 88% of the students study less than x minutes.

$$
\begin{aligned}
& P(X<x)=0.8800 \\
& P\left(z<z_{0}\right)=0.8800 \\
& P\left(0<z<z_{0}\right)=0.8800-0.5=0.3800
\end{aligned}
$$

BUT $z_{0}=1.175 \quad$ from std normal table

$$
\begin{aligned}
& z_{0}=\frac{x-\mu}{\sigma}=1.175 \quad(1 p t) \\
& x=1.175(36)+110 \quad(1 p t) \\
& \\
& =42.3+110=152.3 \quad(1 p t)
\end{aligned}
$$

01.175 z
d. If 8 KFUPM students are selected at random, then find the probability that at most one of them will study less than 126 minutes. From part a $p=0.6700$

$$
\text { binomial } n=8 \quad p=0.6700 \quad q=1-p=0.33 \quad \text { (1pt) }
$$

$$
\begin{aligned}
P(x \leq 1) & =P(x=0)+P(x=1) \quad(1 p t) \\
& =C_{0}^{8} p^{0} q^{8}+C_{1}^{8} p^{1} q^{7} \\
& =(1)(1)(0.33)^{8}+\frac{8!}{1!7!}(0.67)(0.33)^{7} \quad(1 p t) \\
& =0.000141+8(0.67)(0.33)^{7} \\
& =0.000141+0.002284 \\
& =0.002425 \quad(1 p t)
\end{aligned}
$$

Question . 5 (3+2=5-Points)

The percentage of students who will be admitted to the university after taking an entrance exam is 66%. A random sample of 9 students from those who took the entrance exam is selected. Then:
a. Find the probability that 5 from them will be admitted to the university.

$$
\text { binomial } n=9 \quad p=0.66 \quad q=1-p=0.34 \quad \text { (1pt) }
$$

$$
\begin{aligned}
P(x=5) & =C_{5}^{9} p^{5} q^{4} \\
& =\frac{9!}{5!!!4}(0.66)^{5}(0.34)^{4} \quad(1 p t) \\
& =\frac{9 \times 8 \times 7 \times 6}{4 \times 3 \times 2 \times 1}(0.66)^{5}(0.34)^{4} \\
& =0.210866
\end{aligned}
$$

b. Find the expected number of students in the sample who will be admitted to the university.

$$
\begin{aligned}
E[X] & =n p=9(0.66) \quad(1 p t) \\
& =5.94 \quad(1 p t)
\end{aligned}
$$

Question .6(4+4+4=12-Points)

Suppose that on the average there are 5 car accidents weekly at the $3^{\text {rd }}$ street. Then:
a. Find the probability that there will be at most 1 car accidents at the $3^{\text {rd }}$ street next week.

Average $=5$ cars/weekly $=\lambda \quad$ and $t=1 \quad$ So, $\lambda t=5(1)=5 \quad$ (1pt) Poisson
$P(x \leq 1)=P(x=0)+P(x=1) \quad(1 p t)$
$=\frac{(\lambda t)^{0} e^{-\lambda t}}{0!}+\frac{(\lambda t)^{1} e^{-\lambda t}}{1!}$
$=e^{-5}+5 e^{-5} \quad(1 p t)$
$=6 e^{-5}$
$=0.040428 \quad(1 p t)$
b. Find the probability that there will be at least 2 car accident at the $3^{\text {rd }}$ street in the coming 2 weeks.
Average $=5$ cars/weekly $=\lambda \quad$ and $t=2 \quad$ So, $\lambda t=5(2)=10 \quad$ (1pt) Poisson
$P(x \geq 2)=1-[P(x=0)+P(x+1)]$
$=1-\left(\frac{(\lambda t)^{0} e^{-\lambda t}}{0!}+\frac{\left.(\lambda t)^{1}\right)^{-x t}}{1!}\right)$
$=1-\left(e^{-10}+10 e^{-10}\right) \quad(1 p t)$
$=1-11 e^{-10}=1-0.000499 \quad(1 p t)$

$$
=0.999501 \quad(1 p t)
$$

c. Find the mean and standard deviation of the number of car accidents in two years. (Hint: Use one year $=53$ weeks) $\quad t=2$ years $=2(53)$ weeks

Mean

$$
\begin{aligned}
\mu & =E[x]=\lambda t=5(2) 53) \quad(1 p t) \\
& =530 \quad(1 p t)
\end{aligned}
$$

std deviation

$$
\begin{aligned}
\sigma & =\sqrt{\lambda t} \\
& =\sqrt{530} \quad(1 p t) \\
& =23.0217 \quad(1 p t)
\end{aligned}
$$

