

Chapter 1 Topics Must Read lab manual chapter 1. What is descriptive statistics? Measures of Location (Mean, Median, Mode) - Definition - What they represent? - How to compute? Percentiles & Quartiles - Definition - What they represent? - How to compute? Relationship between Mean & Median - Mean = Median \rightarrow distribution is symmetrical – Mean > Median \rightarrow distribution is skewed (not symmetrical) to the right - Mean < Median \rightarrow distribution is skewed (not symmetrical) to the left Engineering Probability & statistics: A decision making approach

	Ste	m a	nd L	_eaf	⁻ Plo	ot	
Steps to create a S	tem & Leaf pl	ot (lab mar	nual				
1) Divide observatio	ins into stem	and leaf					
2) List stems in on	e column (asc	ending ord	er of stems)				
3) List leaf of each	observation in	appropriat	te stem or ro)W			
4) Count occurrenc	e of each leaf	and tally i	n "frequency	" column			
Example for No nitr	ogen data						
observation							
0.32	Step 1)	Stem = Fi	irst two digit	s, Leaf = I	ast digit		
0.53	Step 2)	place ster	m in one col	um			
0.28	Step 3)	place leaf	in next colu	m in the c	orrespondi	ng row for	appropriate ste
0.37	Step 4)	Count occ	currence of e	ach leaf a	nd tally in	"frequency	" column
0.47					-		
0.43	Stem	Leaf	Frequency				
0.36	0.2	8	1				
0.42	0.3	2678	4				
0.38	0.4	2337	4				
0.43	0.5	3	1				
	Total		10				
1					· .		Ì

able 1.	1 The life	e of 40 ca	r batterie	s recorde	ed to the	nearest t	enth of a year.
ABLE	1.1 Car B	attery Lif	e				
2.2	4.1	3.5	4.5	3.2	3.7	3.0	2.6
3.4	1.6	3.1	3.3	3.8	3.1	4.7	3.7
2.5	4.3	3.4	3.6	2.9	3.3	3.9	3.1
3.3	3.1	3.7	4.4	3.2	4.1	1.9	3.4
4.7	3.8	3.2	2.6	3.9	3.0	4.2	3.5
Valpole ny valu	e et.al. 20 ie belong	02, 16) ing to 2.	$20 - \frac{0.10}{2}$	$2.20 + \frac{0}{2}$	$\left(\frac{10}{2}\right) = [2.1]$	15, 2.25)	is recorded as 2

			NOTE EX	cample	;		
Stem-an	d-Leaf	Plo	t				
Stem	Leaf					f f	n
1	69					2	
2	256	69				5	
3	001	1112	2223334445567778899			25	
4	1123	3457	77			8	
de for g	roupe	d da	ata				
Class Int	erval	\backslash	Class midpoint	f		f / n	
[1,2)			1.5	2	(0.050	
[2,3)			2.5	5	().125	
[3,4)		(3.5	25	().625	
[4,5]			4.5	8	(0.200	

			Example 1.4	2 p.9 of Walpol	e		-	
		No nitro	ogen			Nit	rogen	
	X	X - Mean	(X - Mean) ²	X ²	Х	X - Mean	(X - Mean) ²	X ²
	0.32	-0.079	0.006241	0.1024	0.26	-0.305	0.093025	0.0676
	0.53	0.131	0.017161	0.2809	0.43	-0.135	0.018225	0.1849
	0.28	-0.119	0.014161	0.0784	0.47	-0.095	0.009025	0.2209
	0.37	-0.029	0.000841	0.1369	0.49	-0.075	0.005625	0.2401
	0.47	0.071	0.005041	0.2209	0.52	-0.045	0.002025	0.2704
	0.43	0.031	0.000961	0.1849	0.75	0.185	0.034225	0.5625
	0.36	-0.039	0.001521	0.1296	0.79	0.225	0.050625	0.6241
	0.42	0.021	0.000441	0.1764	0.86	0.295	0.087025	0.7396
	0.38	-0.019	0.000361	0.1444	0.62	0.055	0.003025	0.3844
	0.43	0.031	0.000961	0.1849	0.46	-0.105	0.011025	0.2116
Total	3.99	0.0000	0.047690	1.639700	5.65	0.0000	0.313850	3.506100
Mean = Total/n	0.399				0.565			
Total Sum of Squa	ares (TSS) or S	xx						
variance = [total ()	K - Mean) ²]/(n-1)						
standard deviation	= square root	of variance						
Pango - Max M	lin							

		No nitro	ogen			Ni	trogen	
	Х	X - Mean	(X - Mean) ²	X ²	Х	X - Mean	(X - Mean) ²	X ²
	0.32	-0.079	0.006241	0.1024	0.26	-0.305	0.093025	0.067
	0.53	0.131	0.017161	0.2809	0.43	-0.135	0.018225	0.184
	0.28	-0.119	0.014161	0.0784	0.47	-0.095	0.009025	0.220
	0.37	-0.029	0.000841	0.1369	0.49	-0.075	0.005625	0.240
	0.47	0.071	0.005041	0.2209	0.52	-0.045	0.002025	0.270
	0.43	0.031	0.000961	0.1849	0.75	0.185	0.034225	0.562
	0.36	-0.039	0.001521	0.1296	0.79	0.225	0.050625	0.624
	0.42	0.021	0.000441	0.1764	0.86	0.295	0.087025	0.739
	0.38	-0.019	0.000361	0.1444	0.62	0.055	0.003025	0.384
	0.43	0.031	0.000961	0.1849	0.46	-0.105	0.011025	0.211
otal	3.99	0.0000	0.047690	1.639700	5.65	0.0000	0.313850	3.50610
A T.(.)/.	0.000	0.0470			0.505			
iean = Totai/n	0.399	0.0476	9/(10-1)		0.565			
otal Sum of Squ	ares (TSS) or S	y _{xx}		0.04769				0.3138
ariance = [total (X - Mean) ²]/(n-1	l) 😽	0.00529889				0.034872222	1
tondord doviation		of variance	0 07279347	3.50) <mark>6100-(5</mark>	.65) ² /10	0 186741057	

	No pitr	Example	1.2 0.9 0		2	_	NIH	r0.000	1	2	2
	NO IIIU	(V Meen) ²	I Dula1	- 2 Dule2	Dula2	-	V	(V Meen) ²	I Dula1	2 Dule2	Dule
	^ 0.22	(A - Iviean)	Out	Rulez	Rules	-	^ 0.26	(A - Ivieali)	Out	Rulez	Ruie
	0.52	0.000241	Out	ln.	ln.	-	0.20	0.093025	In	ln.	In
	0.33	0.01/101	Out			-	0.43	0.009025			
	0.37	0.000841	In	In	In	-	0.49	0.005625	In	In	In
	0.47	0.005041	In	In	In	-	0.52	0.002025	In	In	In
	0.43	0.000961	In	In	In		0.75	0.034225	In	In	In
	0.36	0.001521	In	In	In		0.79	0.050625	Out	In	In
	0.42	0.000441	In	In	In		0.86	0.087025	Out	In	In
	0.38	0.000361	In	In	In		0.62	0.003025	In	In	In
	0.43	0.000961	In	In	In		0.46	0.011025	In	In	In
Fotal	3.99	0.047690				-	5.65	0.313850			
			7/10	10/10	10/10				7/10	10/10	10/10
Mean = Total/n	0.399		or	OT	or		0.565		or	or	or
Fotal Sum of Squ	ares (TSS) or S	S _{xx}	- 70%	100%	100%				10%	100%	100%
ariance = [total (X - Mean) ²]/(n-	0.00529889						0.034872222			
standard deviation	n = square root	0.07279347						0.186741057			
Mean-k*s	0.399-0.072	79=	0.3262	0.2534	0.1806				0.3783	0.1915	0.00
Mean+k*s	0.399 ± 0.072	79=	0.4718	0.5446	0.6174				0.7517	0.9385	1.12

		No nitro	den		e	Nit	rogen	
	X	X - Mean	(X - Mean) ²	7	x	X - Mean	(X - Mean) ²	7
	0.32	-0.079	0.006241	-1 085	0.26	-0.305	0.093025	-1.63
	0.53	0.131	0.017161	1 800	0.43	-0 135	0.018225	-0.72
	0.28	-0 119	0.014161	-1 635	0.10	-0.095	0.009025	-0.50
	0.37	-0.029	0.000841	-0.398	0.49	-0.075	0.005625	-0.40
	0.47	0.071	0.005041	0.975	0.52	-0.045	0.002025	-0.24
	0.43	0.031	0.000961	0.426	0.75	0.185	0.034225	0.99
	0.36	-0.039	0.001521	-0.536	0.79	0.225	0.050625	1.20
	0.42	0.021	0.000441	0.288	0.86	0.295	0.087025	1.58
	0.38	-0.019	0.000361	-0.261	0.62	0.055	0.003025	0.29
	0.43	0.031	0.000961	0.426	0.46	-0.105	0.011025	-0.56
Total	3.99	0.0000	0.047690	0.000	5.65	0.0000	0.313850	0.00
/lean = Total/n	0.399		0.43-0.399)/0.07279	0.565			
Total Sum of Sou	ares (TSS) or S	Svy L						
variance = [total (X - Mean) ² 1/(n-	1)	0 00529889	-/			0.034872222	
standard deviation	n = square root	of variance	0.00020000				0 186741057	
			0.01210011	/			0.1007 41007	
Range = Max -	Min		0.25				0.6	

	0.32 0.53 0.28	-0.079 0.131	0.006241	- i	-				
	0.53 0.28	0.131				0.26	-0.305	0.093025	
	0.28		0.017161			0.43	-0.135	0.018225	
		-0.119	0.014161			0.47	-0.095	0.009025	
	0.37	-0.029	0.000841			0.49	-0.075	0.005625	
	0.47	0.071	0.005041			0.52	-0.045	0.002025	
	0.43	0.031	0.000961			0.75	0.185	0.034225	
	0.36	-0.039	0.001521			0.79	0.225	0.050625	
	0.42	0.021	0.000441			0.86	0.295	0.087025	
	0.38	-0.019	0.000361			0.62	0.055	0.003025	
	0.43	0.031	0.000961			0.46	-0.105	0.011025	
Total	3.99	0.0000	0.047690		+	5.65	0.0000	0.313850	
median	0.4	Î				0.505			
Mean = Total/n	0.399					0.565			
Total Sum of Square	s (TSS) or S	xx							
variance = [total (X -	Mean)2]/(n-1)	0.00529889					0.034872222	
standard deviation =	square root	of variance	0.07279347					0.186741057	
Range = Max - Mir	n		0.25		+			0.6	
Coeff of variation = (s	std deviation'	/mean		0.182	-				0
Coeff of Skewness =	(Mean-Medi	an)/(std deva	tion)/3	-0.0412	\neg				0.9
		1		i					

Stem & Leaf Example- Nitrogen Data (Walpole Data from Ex 1.2 -Review)

- Steps
 - 1. Stem= first decimal Leaf=last digit
 - 2. Place stem in one column in ascending order
 - 3. Place Leaf in next column in the corresponding row for appropriate Stem
 - 4. Count occurrence of each Leaf & tally in 'Frequency' column

St	eps	Observation				
1.	Stem= first decimal	0.26	1			
	Leaf=last digit	0.43	1	Stem	Leaf	Frequency
2.	Place stem in one column in ascending order	0.47	1	0.2	6	1
3	Place Leaf in next column	0.49	1	0.3		
0.	in the corresponding row	0.52	1	0.4	3679	4
	for appropriate Stem	0.75	\checkmark	0.5	2	1
4.	Count occurrence of each	0.79	√	0.6	2	1
	column	0.86	1	0.7	59	2
		0.62	1	0.8	6	1
		0.46	1	Total		10
Engine	eering Probability & statistics: A decision n	naking approad	:h			

	Exa	ample 1.2	p.9 of W	alpole	Frequency (Distributi	on	
		No n	itrogen				N	itrogen
		frequen	cum.					cum
X	count	су	Freq		X	count	f	Fred
0.32					0.26			
0.53		STO)PI		0.43			
0.28		Wro	nal		0.47			
0.37		Data MI	IST be		0.49			
0.47		SORTED in			0.52			
0.43		increa	SORTEDIN		0.75			
0.36		order	firet		0.79			
0.42			mot		0.86			
0.38					0.62			
0.43					0.46			
Total								
						1		

0.32 0.53	x	Tally	Frequency	Cumulative Frequency	Relative Frequency	Relative Cumulative Frequency
0.28	0.28	1	1	1	0.10	0.10
0.37	0.32	1	1	2	0.10	0.20
0.47	0.36	1	1	3	0.10	0.30
0.43	0.37	1	1	4	0.10	0.40
0.30	0.38	1	1	5	0.10	0.50
0.38	0.42	1	1	6	0.10	0.60
0.43	0.43	11	2	8	0.20	0.80
	0.47	1	1	9	0.10	0.90
Relative Frequency	0.53	1	1	10	0.10	1.00
	Total		10		1.00	

something to improve our frequency distribution. We need grouped frequency distributions.

Engineering Probability & statistics: A decision making approach

ble 1.	1 The life	e of 40 ca	r batterie	s recorde	ed to the	nearest t	enth of a year.
ABLE	1.1 Car B	attery Lif	e				
2.2	4.1	3.5	4.5	3.2	3.7	3.0	2.6
3.4	1.6	3.1	3.3	3.8	3.1	4.7	3.7
2.5	4.3	3.4	3.6	2.9	3.3	3.9	3.1
3.3	3.1	3.7	4.4	3.2	4.1	1.9	3.4
4.7	3.8	3.2	2.6	3.9	3.0	4.2	3.5
'alpole iy valu	e et.al. 20	102, 16) ing to 2.	$20 - \frac{0.10}{2}$,	$2.20 + \frac{0}{2}$	$\frac{10}{2} = [2.1]$.5, 2.25)	is recorded as 2.

Gı	rouped	d Freq Batter	uer v I	ncy E ife da	xam ata	ple for
	Range = 4.'	7 - 1.6 = 3.1,	No. o	f Classes:	$\sqrt{40} \approx 6$.32
	Class Widt	<mark>h:</mark> 3.1/6≈0.	.52 , (\	Walpole e	et.al. 200	2, 16)
	Interval	Midpoint	f	f/n	F	F/n
1.5-1.9 is to	1.5—1.9	1.7	2	0.05	2	0.050
the nearest	2.0-2.4	2.2	1	0.025	3	0.075
0.1 year.	2.5-2.9	2.7	4	0.100	7	0.175
battery lives	3.0-3.4	3.2	15	0.375	22	0.550
of 1.45 to	3.5-3.9	3.7	10	0.250	32	0.800
1.95 will be	4.0-4.4	4.2	5	0.125	37	0.925
this interval	4.5-4.9	4.7	3	0.075	40	1.000
80th perce years (sinc that have li	entile is 3.9 yea the lifetimes a fetime between	ars, that is 80% are recorded to a 2.95 years and	of the I the nea 1 3.45 y	<mark>patteries</mark> ha arest 10th). 1 ears is <mark>3.2</mark> ×	ve lifetimes Total lifetim 15 =48 app	less than 3.95 les of the batteries roximately.

Engineering Probability & statistics: A decision making approach

		Da	ita			
Interval*	Midpoint	f	f/n			
1.5—2	1.75	2	0.05			
2.0—2.5	2.25	1	0.025			
2.5—3	2.75	4	0.100			
3.0—3.5	3.25	15	0.375			
3.5—4	3.75	10	0.250			
4.0—4.5	4.25	5	0.125			
*Lower limit incl The following qu	4.75 uded antities are calc	3 ulated fror	0.075 n the above	frequenc	y distributio	n:
*Lower limit incl The following qu $\sum y = (1.75)(2) + \frac{1}{y} = 138.5/n \approx 3.$ $\sum y^2 f = (1.75)^2 (1.75)^2 (1.75)^2 (1.75)^2 (1.75)^2 (1.75)^2 = 498.5 - (1.35)^2 (1.75)^2 (1.75)^2 = 0.485737179$ $s \approx 0.696948476$	$ 4.75 \\ uded \\ antities are calculated \\ (2.25)(1) + \dots + (4 \\ 4625, \\ (2) + (2.25)^2(1) + \dots \\ 88.5)^2 / n = 18.9437 \\ 0, \\ 0, \\ 0, \\ 0, \\ 0, \\ 0, \\ 0, \\ 0$	3 ulated from .75)(3) = 1: .+ (4.75) ² (.75,	0.075 m the above 38.5, 3) = 498.5,	frequenc	y distributio	n:
*Lower limit incl The following qu $\sum y = (1.75)(2) + \frac{1}{y^2} = 138.5/n \approx 3.2$ $\sum y^2 f = (1.75)^2 (1.75)^2 (1.75)^2 (1.75)^2 = 498.5 - (1.35)^2 \approx 0.485737179$ $s^2 \approx 0.485737179$ $s \approx 0.696948476$	4.75 uded antities are calcu- (2.25)(1) + + (4 4625, (2) + (2.25) ² (1) + 88.5) ² / n = 18.9437 0,	3 ulated from .75)(3) = 1: .+ (4.75) ² (0.075 m the above 38.5, 3) = 498.5,	frequenc	y distributio	n:
*Lower limit incl The following qu $\sum y = (1.75)(2) + \frac{1}{y} = 138.5/n \approx 3.5$ $\sum y^2 f = (1.75)^2$	$ 4.75 \\ uded \\ antities are calculated \\ (2.25)(1) + \dots + (4 \\ 4625, \\ (2) + (2.25)^2(1) + \dots \\ 88.5)^2 / n = 18.9437 \\ 0, \\ 0, \\ 0, \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	3 ulated from .75)(3) = 1: .+(4.75) ² (.75, nal	0.075 m the above 38.5, 3) = 498.5,	frequenc	y distributio d	n:
*Lower limit incl The following qu $\sum y = (1.75)(2) + \frac{1}{y} = 138.5/n \approx 3.5$ $\sum y^2 f = (1.75)^2 $	$ 4.75 \\ uded \\ antities are calculated \\ + (2.25)(1) + \dots + (4 \\ 4625, \\ (2) + (2.25)^2(1) + \dots \\ + (8.5)^2 / n = 18.9437 \\ 0, \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 3.412 \\ \hline 0 $	3 ulated fror .75)(3) = 1: .+(4.75) ² (75, nal 25	0.075 m the above 38.5, 3) = 498.5,	frequenc Groupe 3.4625	y distributio	in:

