Stat319: Probability and Statistics for Engineers and Scientists

Chapter 1 -Descriptive Statistics

Chapter 1 Topics

- Must Read lab manual chapter 1.
- What is descriptive statistics?
- Measures of Location (Mean, Median, Mode)
- Definition
- What they represent?
- How to compute?
- Percentiles \& Quartiles
- Definition
- What they represent?
- How to compute?
- Relationship between Mean \& Median
- Mean $=$ Median \rightarrow distribution is symmetrical
- Mean > Median \rightarrow distribution is skewed (not symmetrical) to the right
- Mean < Median \rightarrow distribution is skewed (not symmetrical) to the left

What is descriptive statistics?

- Descriptive statistics
- Describing data with summary information
- Main focus:
- How to describe data
- How to describe:
- Data distribution
- Data central location
- Data spread

Descriptive Chapter Overview

Engineering Probability \& statistics: A decision making approach

Getting to know your data

- How to know much about your data?
- Quick way
- Do stem-and-Leaf Plot
- Data like a tree
- Can be broken up into
- Stem
- Leaves

Stem and Leaf Plot

Stem \& Leaf Example- Nitrogen Data (Walpole Data from Ex 1.2)

- Steps

1. Stem= first decimal Leaf=last digit
2. Place stem in one column in ascending order
3. Place Leaf in next column in the corresponding row for appropriate Stem
4. Count occurrence of each Leaf \& tally in 'Frequency' column

Observation	$\sqrt{ }$			
0.26				
0.43	\checkmark	Stem	Leaf	Frequency
0.47	\checkmark	0.2	6	1
0.49	\checkmark	0.3		
0.52	$\sqrt{ }$	0.4	3679	4
0.75	\checkmark	0.5	2	1
0.79	\checkmark	0.6	2	1
0.86	\checkmark	0.7	59	2
0.62	\checkmark	0.8	6	1
0.46	\checkmark	Total		10

Engineering Probability \& statistics: A decision making approach

Measures of Location

- Where is the data center located for the Sample we are trying to describe?
- Mean $=$ arithmelic average (numerical Average, p .9) $\bar{y}=\frac{1}{n} \sum y$
- Median $=$ the middele of ordered observaions (uninfluenced center, $\mathrm{p}, 9)$
- Mode $=$ the most frequent observaion (Lab p. 19)

Example 1.2 p .9 of Walpole		ordered data		
No nitrogen	Nitrogen		No nitrogen	Nitrogen
X	X		X	X
0.32	0.26		0.28	0.26
0.53	0.43		0.32	0.43
0.28	0.47		0.36	0.46
0.37	0.49		0.37	0.47
0.47	0.52		0.38	0.49
0.43	0.75		0.42	0.52
0.36	0.79		0.43	0.62
0.42	0.86		0.43	0.75
0.38	0.62		0.47	0.79
0.43	0.46		0.53	0.86

Measures of Location

- Where is the data center located for the sample we are trying to describe?
- Mean $=$ arithmetic average (numerical Average, p .9) $\quad \bar{y}=\frac{1}{n} \sum y$
- Median = the middle of ordered observations (uninfluenced center, p.9)
- Mode= the most frequent observation (Lab p. 19)

More Example

Table 1.1 The life of 40 car batteries recorded to the nearest tenth of a year.
TABLE 1.1 Car Battery Life

2.2	4.1	3.5	4.5	3.2	3.7	3.0	2.6
3.4	1.6	3.1	3.3	3.8	3.1	4.7	3.7
2.5	4.3	3.4	3.6	2.9	3.3	3.9	3.1
3.3	3.1	3.7	4.4	3.2	4.1	1.9	3.4
4.7	3.8	3.2	2.6	3.9	3.0	4.2	3.5

(Walpole et.al. 2002, 16)
Any value belonging to $\left[2.20-\frac{0.10}{2}, 2.20+\frac{0.10}{2}\right)=[2.15,2.25)$ is recorded as 2.2

[^0]
More Example

Stem-and-Leaf Plot

Stem	Leaf	f	f / n
1	69	2	
2	25669	5	
3	0011112223334445567778899	25	
4	11234577	8	

Mode for grouped data

Class Interval	Class midpoint	f	f / n
$[1,2)$	1.5	2	0.050
$[2,3)$	2.5	5	0.125
$[3,4)$	3.5	25	0.625
$[4,5)$	4.5	8	0.200

Calculating Percentiles

- $\mathrm{P}_{\alpha}=$ value that exceeds $\alpha \%$ of data

Data position: $R_{\alpha}=\alpha \quad \frac{1+n}{100}=i+d, \quad \alpha=1,2, \ldots, 99 ;$
α th Percentile: $P_{\alpha}=(1-d) y_{(i)}+d y_{(i+1)}$

- Special percentiles (Tue for any distibution)

- $P_{25}=25^{\text {th }}$ percentile $=1^{\text {st }}$ quartile $\left(Q_{1}\right)$
- $P_{50}=50^{\text {th }}$ percentile $=2^{\text {st }}$ quartile $\left(Q_{2}\right)=$ Median ordered data
- $P_{75}=75^{\text {th }}$ percentile $=3^{\text {st }}$ quartile $\left(Q_{3}\right)$
- Computing P_{25} (no Nitrogen data)
- Step 1: Order the observations in ascending order (see below)

	No nitrogen
	0.28
	0.32
	0.36
	0.37
	0.38
	0.42
	0.43
	0.43
	0.47
	0.53

[^1]
Shape of a Distribution

- Describes how data is distributed
- Symmetric or skewed

Mean versus Median (symmetic vs steweed)

Mean < Median
\rightarrow distribution is skewed to the left
Mean = Median
\rightarrow distribution is symmetrical

Mean > Median
\rightarrow distribution is skewed to the right

Further about location indices

- Mean: (\$3,000,000/5)

House Prices:
\$2,000,000
500,000
300,000
100,000
100,000
Sum 3,000,000
$=\$ 600,000$

- Median: middle value of ranked data
= \$300,000
- Mode: most frequent value = \$100,000

Which measure of location is the "best"?

- Mean is generally used, unless extreme values (outliers) exist
- Then median is often used, since the median is not sensitive to extreme values.
- Example: Median home prices may be reported for a region less sensitive to outliers

Chapter 1 Topics (cont.)

- Measures of Variability (range, variane, Slandard Deviaion, nerecuaratie range)
- Companies want products that are consistent in quality - good for business
- Profit for manufactured products is a function of process variability
- Process engineers are responsible for controlling process variability
- In Chapters 8-15, variability indices play a major role. Very important to remember how to obtain indices, why, and what they represent
- Definition
- What they represent?
- How to compute? (Book Example 1.3)
- Degrees of freedom = \# of Independent pieces of data information available for computing variability
- Why compute? Which variability index is more important?
- Depends on situation
- Inference on variance : variance is important
- Inference on mean: standard deviation is important

Engineering Probability \& statistics: A decision making approach

Measures of Variation

Engineering Probability \& statistics: A decision making approach

Variation

- Measures of variation give information on the spread or variability of the data values.

Measures of Variability

- Measures of data spread
- How spread out is the data?
- Range (R) = Max-Min
- Variance = average squared deviation from the mean
$s^{2}=\frac{T S S}{n-1}$ where $T S S=\sum(y-\bar{y})^{2}=\sum y^{2}-\frac{1}{n}\left(\sum y\right)^{2}$
- Standard Deviation $(s)=$ Square root of Variance

Range

- Simplest measure of variation
- Difference between the largest and the smallest observations:

$$
\text { Range }=x_{\text {maximum }}-x_{\text {minimum }}
$$

Example:

Disadvantages of the Range

- Ignores the way in which data are distributed

- Sensitive to outliers

$$
\begin{gathered}
1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,5 \\
\text { Range = 5-1=4} \\
\text { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,2,2,2,2,2,2,2,2,3,3,3,3,4, } 120 \\
\text { Range = 120-1=119} \\
\hline
\end{gathered}
$$

Engineering Probability \& statisties: A decision making approach

Interquartile Range

- Can eliminate some outlier problems by using the interquartile range
- Eliminate some high-and low-valued observations and calculate the range from the remaining values.
- Interquartile range $=3^{\text {rd }}$ quartile $-1^{\text {st }}$ quartile

Interquartile Range

Box-Whiskers Plot (or Box-Plot) Example:

Variance

- Average of squared deviations of values from the mean
- Sample variance:

$$
\mathrm{s}^{2}=\frac{\sum_{\mathrm{i}=1}^{\mathrm{n}}\left(\mathrm{y}_{\mathrm{i}}-\overline{\mathrm{y}}\right)^{2}}{\mathrm{n}-1}
$$

- Population variance: $\sigma^{2}=\frac{\sum_{i=1}^{N}\left(y_{i}-\mu\right)^{2}}{N}$

Standard Deviation

- Most commonly used measure of variation
- Shows variation about the mean
- Has the same units as the original data
- Sample standard deviation:

$$
s=\sqrt{\frac{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}}{n-1}}
$$

$\quad-$ Population standard deviation:	
Engineering Probability \& statistics: A decision making approach	$\sigma=\sqrt{\frac{\sum_{i=1}^{N}\left(y_{i}-\mu\right)^{2}}{N}}$

Calculation Example: Sample Standard Deviation

Sample
Data (Y_{i}):

10	12	14	15	17	18	18	24

$$
\mathrm{n}=8 \quad \text { Mean }=\bar{y}=16
$$

Engineering Probability \& statistics: A decision making approach

Measures of Variability

	No nitrogen				Nitrogen			
	X	X-Mean	(X-Mean) ${ }^{2}$	X^{2}	X	X-Mean	$(\mathrm{X}-\mathrm{Mean})^{2}$	X^{2}
	0.32	-0.079	0.006241	0.1024	0.26	-0.305	0.093025	0.0676
	0.53	0.131	0.017161	0.2809	0.43	-0.135	0.018225	0.1849
	0.28	-0.119	0.014161	0.0784	0.47	-0.095	0.009025	0.2209
	0.37	-0.029	0.000841	0.1369	0.49	-0.075	0.005625	0.2401
	0.47	0.071	0.005041	0.2209	0.52	-0.045	0.002025	0.2704
	0.43	0.031	0.000961	0.1849	0.75	0.185	0.034225	0.5625
	0.36	-0.039	0.001521	0.1296	0.79	0.225	0.050625	0.6241
	0.42	0.021	0.000441	0.1764	0.86	0.295	0.087025	0.7396
	0.38	-0.019	0.000361	0.1444	0.62	0.055	0.003025	0.3844
	0.43	0.031	0.000961	0.1849	0.46	-0.105	0.011025	0.2116
Total	3.99	0.0000	0.047690	1.639700	5.65	0.0000	0.313850	3.506100
Mean = Total/n	0.399				0.565			
Total Sum of Squares (TSS) or S_{xx}								
variance $=\left[\right.$ total (X-Mean) $\left.{ }^{2}\right] /(n-1)$								
standard deviation $=$ square root of variance								
Range $=$ Max - Min								

Measures of Variability

	No nitrogen				Nitrogen						
	X	X-Mean	(X-Mean) ${ }^{2}$	X^{2}	X	X-Mean	(X-Mean) ${ }^{2}$	X^{2}			
	0.32	-0.079	0.006241	0.1024	0.26	-0.305	0.093025	0.0676			
	0.53	0.131	0.017161	0.2809	0.43	-0.135	0.018225	0.1849			
	0.28	-0.119	0.014161	0.0784	0.47	-0.095	0.009025	0.2209			
	0.37	-0.029	0.000841	0.1369	0.49	-0.075	0.005625	0.2401			
	0.47	0.071	0.005041	0.2209	0.52	-0.045	0.002025	0.2704			
	0.43	0.031	0.000961	0.1849	0.75	0.185	0.034225	0.5625			
	0.36	-0.039	0.001521	0.1296	0.79	0.225	0.050625	0.6241			
	0.42	0.021	0.000441	0.1764	0.86	0.295	0.087025	0.7396			
	0.38	-0.019	0.000361	0.1444	0.62	0.055	0.003025	0.3844			
	0.43	0.031	0.000961	0.1849	0.46	-0.105	0.011025	0.2116			
Total	3.99	0.0000	0.047690	639700	5.65	0.0000	0.313850	506100			
Mean = Total/n	0.399	0.0476	9/(10-1)		0.565						
Total Sum of Squares (TSS) or S_{xx}								31385			
$\begin{array}{lll}\text { variance }=\left[\text { total }(\mathrm{X}-\text { Mean })^{2}\right] /(\mathrm{n}-1) & 0.00529889 \\ \text { standard deviation }=\text { square root of variance } & 0.07279347\end{array}$				$3.506100-(5.65)^{2 / 10}$			0.034872222				
				0.186741057	\rightarrow						
Range $=$ Max - Min		0.25									
		0.6									

Chapter 1 Topics (cont.)

- Concept of relative frequency distribution
- "a picture is worth a thousand words (data)"
- Shape of distribution
- Symmetrical vs
- Skewed
- to the right
- to the left
- Number of Modes for distribution
- One mode -Unimodal
- Two modes - Bimodal
- Multiple mode - Multimodal
- Special distribution - Bell-shaped curve (Normal Curve)
- Empirical Rule
- z-scores
- Coefficient of Variation (C.V.)
- Coefficient of Skewness (C.S.)

[^2]
Mean versus Median

 (symmetric vs skewed)

Empirical rule

- Special unimodal symmetrical distribution: Bell shaped (Normal curve)
- Rule is used to determine if data might at a first glance follow the normal distribution
- Rule:
- Approx 68\% of measurement will lie within 1 standard deviation of their mean
- Approx 95\% of measurement will lie within 2 standard deviation of their mean
- Almost all measurements will lie within 3 standard deviation of their mean
- A population/sample satisfying all 3 properties above is said to satisfy the empirical rule.
- This however, doesn't guarantee that data come from a normal distribution. (coz: Rule does not mention anything about the mode)

[^3]
The Empirical Rule

- If the data distribution is bell-shaped, then the interval:
- $\mu \pm 1 \sigma$ contains about 68% of the values in the popilation or the sample

The Empirical Rule

- $\mu \pm 2 \sigma$ contains about 95% of the values in the population or the sample
- $\mu \pm 3 \sigma$ contains about 99.7% of the values in the population or the sample

Engineering Probability \& statistics: A decision making approach

Example for Empirical Rule

Example 1.2 p. 9 of Walpole											
	No nitrogen		$\begin{gathered} \hline 1 \\ \text { Rule1 } \end{gathered}$	$\begin{gathered} \hline 2 \\ \text { Rule2 } \end{gathered}$	$\begin{gathered} \hline 3 \\ \text { Rule3 } \end{gathered}$	Nitrogen			$\begin{gathered} \hline 2 \\ \text { Rule2 } \end{gathered}$	$\begin{gathered} \hline 3 \\ \text { Rule3 } \end{gathered}$	
	X	$\left(\mathrm{X}\right.$ - Mean) ${ }^{2}$				X	$(\mathrm{X}-\mathrm{Mean})^{2}$				
	0.32	0.006241	Out	In	In	0.26	0.093025	Out	In	In	
	0.53	0.017161	Out	In	In	0.43	0.018225	In	In	In	
	0.28	0.014161	Out	In	In	0.47	0.009025	In	In	In	
	0.37	0.000841	In	In	In	0.49	0.005625	In	In	In	
	0.47	0.005041	In	In	In	0.52	0.002025	In	In	In	
	0.43	0.000961	In	In	In	0.75	0.034225	In	In	In	
	0.36	0.001521	In	In	In	0.79	0.050625	Out	In	In	
	0.42	0.000441	In	In	In	0.86	0.087025	Out	In	In	
	0.38	0.000361	In	In	In	0.62	0.003025	In	In	In	
	0.43	0.000961	In	In	In	0.46	0.011025	In	In	In	
Total	3.99	0.047690	$\begin{gathered} 7 / 10 \\ \text { or } \\ 70 \% \end{gathered}$		$\begin{gathered} 10 / 10 \\ \text { or } \\ 100 \% \end{gathered}$	5.65	0.313850	$\begin{gathered} 7 / 10 \\ \text { or } \\ 70 \% \end{gathered}$	10110 $10 / 10$ or or 100% 100%		
Mean = Total/n	0.399					0.565					
Total Sum of Squares (TSS) or S_{xx}											
variance $=\left[\right.$ total $\left.(X-\text { Mean })^{2}\right] /(\mathrm{n}-10.00529889$							0.034872222				
standard deviation = square root 0.07279347							0.186741057				
Mean-k*s	0.399-0.07279=		. 3262	0.2534	0.1806			0.3783	0.1915	0.0048	
Mean+k*s	$0.399+0.07279$		0.471	0.5446	0.6174			0.7517	0.9385	1.1252	

Z-scores

- Z = (x-Mean)/(standard Deviation)
- Transforms observations into standard deviation units
- Negative z scores: data below mean
- Positive z scores: data above mean
- Magnitude of z score: how far away data is from mean

[^4]
Measures of Variability

Engineering Probability \& statistics: A decision making approach

CV: Comparing Standard Deviations

[^5]
Coefficient of Variation

- Measures relative variation
- Sometimes in percentage (\%)
- Shows variation relative to mean
- Is used to compare two or more sets of data measured in different units

Population
$C V=\left(\frac{\sigma}{\mu}\right) \cdot 100 \%$

Sample

Engineering Probability \& statistics: A decision making approach

Coefficient of variation (CV)

- Relates variability in sample to the mean

$$
C V=s / \bar{y}
$$

Comparing Coefficient of Variation

- Stock A:
- Average price last year $=\$ 50$
- Standard deviation $=\$ 5$

- Stock B:
- Average price last year $=\$ 100$
- Standard deviation $=\$ 5$

$$
C V_{B}=\left(\frac{s}{\bar{x}}\right) \cdot 100 \%=\frac{\$ 5}{\$ 100} \cdot 100 \%=5 \%
$$

Both stocks have the same standard deviation, but stock B is less variable relative to its price

Coefficient of Skewness (CS)

- Indicates direction of the relative frequency distribution either
- Skewed to lower values (left)
- Skewed to higher values (right)
- Symmetrical

$$
C S=\frac{\bar{y}-\tilde{y}}{S / 3}
$$

- Negative value of CS: Negative skewed/Skewed Left/left tailed distribution
- Positive value of CS: Positive skewed/Skewed Right/Right tailed distribution
- $C S=0$: Symmetrical distribution

Examples

Engineering Probability \& statistics: A decision making approach

Stem \& Leaf Example- Nitrogen Data (Walpole Data from Ex 1.2 -Review)

- Steps

1. Stem= first decimal Leaf=last digit
2. Place stem in one column in ascending order
3. Place Leaf in next column in the corresponding row for appropriate Stem
4. Count occurrence of each Leaf \& tally in 'Frequency' column

Observation	$\sqrt{ }$			
0.26				
0.43	\checkmark	Stem	Leaf	Frequency
0.47	\checkmark	0.2	6	1
0.49	$\sqrt{ }$	0.3		
0.52	\checkmark	0.4	3679	4
0.75	\checkmark	0.5	2	1
0.79	\checkmark	0.6	2	1
0.86	$\sqrt{ }$	0.7	59	2
0.62	\checkmark	0.8	6	1
0.46	\checkmark	Total		10

[^6]
Stem-and Leaf Information

- Gives the shape of the distribution
- No nitrogen data
- Skewed right distribution

Chapter 1 Topics (cont.)

- Graphical Methods and Data Description
_ " a picture is worth a thousand words (data)"
- Stem and leaf plot (p16-17)
- Frequency distributions
- Frequency tables (p. 18 \& Lab M, pp.10-12)
- Graphical displays
- Frequency Histogram (p. 12 \& Lab M, pp. 18-19)
- Frequency plots (Lab M, pp.13-15)
" plot
" Polygon
» Smoothed frequency curves (p. 19)
- Cumulative Frequency plot (Lab M, pp.13-15)
- And Relative Frequency equivalents
- Box-plot (lab M, p. 24) \& Outlier detection (Inner \& Outer fences)
- Other graphs
- Bar Chart (for discrete \& Qualitative data, Lab M, pp.15-17)
- Pie chart (for qualitative data, Lab M, pp. 17-18)
- Scatterplot (for ordered bivariate data, X and $\mathrm{Y}, \mathrm{p} 352$): will be discussed further in chap 11

[^7]
Why Use Frequency Distributions?

- A frequency distribution is a way to summarize data
- The distribution condenses the raw data into a more useful form...
- and allows for a quick visual interpretation of the data

Frequency Distribution: Discrete Data

- Discrete data: possible values are countable

Example: An advertiser asks 200 customers how many days per week they read the daily newspaper.

Engineering Probability \& statistics: A decision making approach

Relative Frequency

Relative Frequency: What proportion is in each category?

Number of days read	Frequency	Relative Frequency	
0	44	. 22	$\frac{44}{200}=.22$
1	24	. 12	
2	18	. 09	22% of the people in the sample report that they read the newspaper 0 days per week
3	16	. 08	
4	20	.10	
5	22	. 11	
6	26	. 13	
7	30	. 15	
Total	200	1.00	News

Frequency Distributions

Example 1.2 p. 9 of Walpole Frequency Distribution								
No nitrogen							Nitrogen	
X	count	frequen cy	cum. Freq		X	count	f	cum. Freq
0.32					0.26			
0.53		STOP! Wrong! Data MUST be SORTED in increasing order first			0.43			
0.28					0.47			
0.37					0.49			
0.47					0.52			
0.43					0.75			
0.36					0.79			
0.42					0.86			
0.38					0.62			
0.43					0.46			
Total								
							1	1

Engineering Probability \& statistics: A decision making approach

Frequency Distributions for No Nitrogen Data
0.32
0.53
0.28
0.37
0.47
0.43
0.36
0.42
0.38
0.43

Relative Frequency
= Frequency/n

\mathbf{x}	Tally	Frequency	Cumulative Frequency	Relative Frequency	Relative Cumulative Frequency
0.28	$\boldsymbol{1}$	1	1	0.10	0.10
0.32	$\boldsymbol{1}$	1	2	0.10	0.20
0.36	$\boldsymbol{1}$	1	3	0.10	0.30
0.37	$\boldsymbol{1}$	1	4	0.10	0.40
0.38	$\boldsymbol{1}$	1	5	0.10	0.50
0.42	$\boldsymbol{1}$	1	6	0.10	0.60
0.43	$\boldsymbol{1 1}$	2	8	0.20	0.80
0.47	$\boldsymbol{1}$	1	9	0.10	0.90
0.53	$\boldsymbol{1}$	1	10	0.10	1.00
Total		$\mathbf{1 0}$		1.00	

If $\mathrm{n}>30$ data, we may have too many rows in the frequency distribution. We need to do something to improve our frequency distribution. We need grouped frequency distributions.

Engineering Probability \& statistics: A decision making approach

Grouped Frequency Distributions

Engineering Probability \& statistics: A decision making approach

General Guidelines

- Lab Manual (p.10):

$$
\text { number of classes }=\sqrt{n}
$$

- Distributions with numerous observations are more likely to be smooth and have gaps filled since data are plentiful
- Class Width
- Class widths can typically be reduced as the number of observations increases

$$
\text { Class Width } \simeq \frac{\text { Range }}{\text { Number of Classes }}
$$

Engineering Probability \& statistics: A decision making approach

Battery Life Example

Table 1.1 The life of 40 car batteries recorded to the nearest tenth of a year.
TABLE 1.1 Car Battery Life

2.2	4.1	3.5	4.5	3.2	3.7	3.0	2.6
3.4	1.6	3.1	3.3	3.8	3.1	4.7	3.7
2.5	4.3	3.4	3.6	2.9	3.3	3.9	3.1
3.3	3.1	3.7	4.4	3.2	4.1	1.9	3.4
4.7	3.8	3.2	2.6	3.9	3.0	4.2	3.5

(Walpole et.al. 2002, 16)
Any value belonging to $\left[2.20-\frac{0.10}{2}, 2.20+\frac{0.10}{2}\right)=[2.15,2.25)$ is recorded as 2.2

Grouped Frequency Example for Batterv Life data

Range $=4.7-1.6=3.1$, No. of Classes: $\sqrt{40} \approx 6.32$ Class Width: $3.1 / 6 \approx 0.52$, (Walpole et.al. 2002, 16)

		Interval	Midpoint	f	f / n	F

80th percentile is 3.9 years, that is 80% of the batteries have lifetimes less than 3.95 years (since the lifetimes are recorded to the nearest 10th). Total lifetimes of the batteries that have lifetime between 2.95 years and 3.45 years is $3.2 \times 15=48$ approximately.

Chapter 1 Topics (cont.)

- Mean, Variance, and Percentiles of Grouped Data
- Approximate: lose precision
- But sometimes when you don't have any other information or choice, losing some precision is a small price to pay

Mean, Variances and Percentiles of Grouped data

Mean for grouped data:

$$
\bar{y}=\frac{1}{n} \sum y f
$$

Variance for grouped data:

$$
s^{2}=\frac{T S S}{n-1}, \quad T S S=\sum y^{2} f-\frac{1}{n}\left(\sum y f\right)^{2}
$$

Percentiles for grouped data:
Can obtain from the relative cumulative frequency column directly or by the following modifications to the percentile formula

$$
\begin{aligned}
& d=\frac{\frac{\alpha}{100}-r F_{j}}{r F_{j+1}-r F_{j}}, \quad \alpha=1,2, \ldots, 99 \\
& r F_{j}=\text { relative cumulative frequency for the } j^{\text {th }} \text { class } \\
& P_{\alpha}=(1-d) y_{(j)}+d y_{(j+1)}
\end{aligned}
$$

Engineering Probability \& statistics: A decision making approach

Mean \& Variances from Grouped Data

Interval*	Midpoint	f	f / n
$1.5-2$	1.75	2	0.05
$2.0-2.5$	2.25	1	0.025
$2.5-3$	2.75	4	0.100
$3.0-3.5$	3.25	15	0.375
$3.5-4$	3.75	10	0.250
$4.0-4.5$	4.25	5	0.125
$4.5-5$	4.75	3	0.075

The following quantities are calculated from the above frequency distribution:

```
\sumy=(1.75)(2)+(2.25)(1)+\cdots+(4.75)(3)=138.5,
\overline{y}=138.5/n\approx3.4625,
\sumy 'f}=(1.75\mp@subsup{)}{}{2}(2)+(2.25\mp@subsup{)}{}{2}(1)+\cdots+(4.75\mp@subsup{)}{}{2}(3)=498.5
TSS = 498.5-(138.5)}\mp@subsup{)}{}{2}/n=18.94375
s}\mp@subsup{s}{}{2}\approx0.485737179
s\approx0.696948476
\begin{tabular}{|l|l|l|}
\hline & Original & Grouped \\
\hline \(\bar{y}\) & 3.4125 & 3.4625 \\
\hline\(s\) & 0.7028 & 0.6969 \\
\hline
\end{tabular}
```

Engineering Probability \& statistics: A decision making approach

Determining Percentiles from Relative Cumulative Frequency Distributions

Determination of Percentiles from CRF Distribution
To derive $75^{\text {th }}$ percentile, we proceed as follows: Let $q=75^{\text {th }}$ percentile
rF X

0.55	3.4
0.75	q
0.80	3.9

$\frac{q-3.4}{0.75-0.55}=\frac{3.9-3.4}{0.80-0.55}$,
$q=3.8$,

Graphical Methods

Graphical Methods

Histogram

Frequency Plot

Frequency Polygon

Smoothed Frequency Curve (Distribution)

Graphical Methods

Smoothed Cumulative Frequency Curve

The Relative frequency equivalents of the previous plots can also be used.

Smoothed Relative Cumulative Frequency Curve.

Smoothed Relative Frequency Curve (Distribution)

Graphical Methods

Bar Chart (for discrete and qualitative data)

Pie Chart (for qualitative data)

Scatterplot (for bivariate data - X,Y data) - only in Final exam (chap 11)

[^0]: Engineering Probability \& statistics: A decision making approach

[^1]: Engineering Probability \& statistics: A decision making approach

[^2]: Engineering Probability \& statistics: A decision making approach

[^3]: Engineering Probability \& statistics: A decision making approach

[^4]: Engineering Probability \& statistics: A decision making approach

[^5]: Engineering Probability \& statistics: A decision making approach

[^6]: Engineering Probability \& statistics: A decision making approach

[^7]: Engineering Probability \& statistics: A decision making approach

