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Abstract. In [8], Dontchev and Hager have shown that a monotone set-valued map defined
from a Banach space to its dual which satisfies the Aubin property around a point (x, y) of its graph
is actually single-valued in a neighbourhood of x. We prove a result which is the counterpart of the
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1. Introduction. Let Y be a Banach space and T : Y → 2Y
∗

a set-valued map.
It is an old result in the theory of monotone maps that if T is lower semicontinuous
at an interior point y of its domain, then it is single-valued at y [14]. A relatively
more recent result, due to Dontchev and Hager [8], states that a monotone set-valued
map satisfying the Aubin property around a point (y, y∗) of its graph is actually
single-valued in a neighbourhood of y.

When the operator T is not monotone but rather generalized monotone (quasi-
monotone or pseudomonotone in the Karamardian sense) one cannot hope to obtain
results implying single-valuedness from assumptions such as the Aubin property; this
will be shown by an example (Remark 3.3). Instead, we show in Section 3 that the
Aubin property around a point (y, y∗) of the graph of T with y∗ 6= 0 implies that
T is locally single-directional, i.e, for x near y, T (x) is included in a half-line. The
assumption y∗ 6= 0 is shown to be necessary in general, but is not needed if T is convex
valued. In Section 4 we study the single-directional property of a particular kind of
map: if g : Y → R∪{+∞} is a quasiconvex function, we are interested in the normal
operator whose image at each point is the normal cone to the (adjusted) sublevel set
of g corresponding to the value g(x). This operator has very nice properties and is a
good candidate to replace the Fenchel subdifferential in several applications when the
underlying function is quasiconvex rather than convex, as was shown in [4, 5, 6]. In
the special case where the sublevel set is a polyhedron, we give necessary and sufficient
conditions for the normal operator to be single-directional (Prop. 4.2) and show the
failure of single-directionality in some cases (Prop. 4.4).

The particular case where the set-valued map T is involved in a general variational
system is finally considered in Section 5. This important case covers for example
the solution set of quasivariational inequalities and of parametric complementarity
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problems. More precisely, let T : Y → 2Y
∗

be a quasimonotone and convex-valued
set-valued map and f a strictly differentiable function defined from X×Y to Y ∗. We
show that if the set-valued map R : X → 2Y defined by

R(x) = {y ∈ Y : 0 ∈ f(x, y) + T (y)} .

is metrically regular around (x̄, ȳ), then T is locally single-directional at (ȳ), provided
that f satisfies the ample parametrization condition: ∇xf(x̄, ȳ) is surjective. This is
a counterpart, for quasimonotone operators, of a similar result proved very recently
in [16] for monotone operators.

2. Definitions and basic properties. In the sequel Y 6= {0} will denote a
real Banach space, Y ∗ its topological dual and 〈·, ·〉 the duality pairing. For y ∈ Y
and ρ > 0, we denote by B(y, ρ) and B(y, ρ) respectively the open and the closed
ball of center y and radius ρ, while for y, y′ ∈ Y we denote by [y, y′] the closed
segment {ty + (1 − t)y′ : t ∈ [0, 1]}. The segments ]y, y′[, ]y, y′], [y, y′[ are defined
analogously. For any element y∗ of X∗ we set R+{y∗} = {ty∗ ∈ X∗ : t ≥ 0} and
R++{y∗} = {ty∗ ∈ X∗ : t > 0}.

The topological closure, the interior, the boundary and the convex hull of a set
A ⊂ Y will be denoted respectively by cl(A), int(A), bd(A) and conv(A). Given any
nonempty subset A of Y and a point y ∈ Y , the distance from y to A will be denoted
by dist(y,A) = inf{‖y − y′‖ : y′ ∈ A} and N(A, y) stands for the polar cone to A at
y, that is,

N(A, y) =
{
y∗ ∈ Y ∗ : 〈y∗, u− y〉 ≤ 0, ∀u ∈ A

}
.

Given a Banach space X 6= {0}, the domain and the graph of a set-valued operator
T : Y → 2X will be denoted, respectively, by DomT and GrT while the inverse image
of T at x will be T−1(x) = {y ∈ Y : x ∈ T (y)}.

Recall that a set-valued operator T : Y → 2X is said to satisfy the Aubin property
(also called Lipschitz-like property) around (y, x) ∈ GrT if there exist neighbourhoods
U of y, V of x and a positive real number l such that

T (u) ∩ V ⊂ T (u′) + l‖u′ − u‖BX(0, 1), ∀u, u′ ∈ U

where BX(0, 1) denotes the closed unit ball of X. Let us observe that, as a direct
consequence of the above definition, if T satisfies the Aubin property around a point
(y, x) of its graph then T is nonempty-valued in U .

The operator T is said to be metrically regular around some point (y, x) of GrT
if there exist neighbourhoods U of y, V of x and a positive real number µ such that

d(y′, T−1(x′)) ≤ µd(x′, T (y′)), ∀ y′ ∈ U and x′ ∈ V.

The metric regularity of T is known (see Theorem 1.49 in [15]) to be equivalent to
the Aubin property of the inverse map T−1.

In the sequel we shall deal with proper functions g : Y → R ∪ {+∞} (i.e. func-
tions for which dom g = {y : g(y) < +∞} is nonempty), and we will consider
some generalized convexity assumptions over them. So let us recall that a function
g : Y → R ∪ {+∞} is said to be:

- quasiconvex on a subset C ⊂ dom g if, for any y, y′ ∈ C and any t ∈ [0, 1],

g(ty + (1− t)y′) ≤ max
{
g(y), g(y′)

}
,
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- semistrictly quasiconvex on a subset C ⊂ dom g if, g is quasiconvex and for
any y, y′ ∈ K,

g(y) < g(y′)⇒ g(z) < g(y′), ∀ z ∈ [y, y′[.

Let us denote, for any α ∈ R, by Sα(g) and S<α (g) the sublevel set and the strict
sublevel set associated to g and α :

Sα(g) = {y ∈ Y : g(y) ≤ α} and S<α (g) = {y ∈ Y : g(y) < α}.

Whenever no confusion can occur we will use, for any y ∈ dom g, the simplified
notation Sg(y) and S<g(y) instead of Sg(y)(g) and S<g(y)(g). It is well known that the
quasiconvexity of a function g is characterized by the convexity of the sublevel sets
(or the convexity of the strict sublevel sets). Analogously, it is easy to check that
any lower semicontinuous function g, semistrictly quasiconvex on its domain dom g
satisfies the following property:

∀α > inf
X
g, cl

(
S<α (g)

)
= Sα(g). (2.1)

Roughly speaking, this means that a lower semicontinuous semistrictly quasiconvex
function g does not have any “flat part” with nonempty interior on dom g\argminY g.

As shown in [4, 5], an efficient tool to study the properties of quasiconvex functions
is the so-called normal operator Na

g defined on dom g as the normal cone to the
adjusted sublevel sets Sag , that is:

Na
g (x) =

{
x∗ ∈ X∗ : 〈x∗, y − x〉 ≤ 0, ∀y ∈ Sag (x)

}
where Sag (x) = Sg(x) ∩ B

(
S<g(x), ρx

) (
with ρx = dist(x, S<g(x))

)
if x /∈ argmin g, and

Sag (x) = Sg(x) otherwise. Many precious properties of the operator have been proved
for quasiconvex functions (see [4], [5]). Let us notice that, since S<g(y) ⊂ S

a
g (y) ⊂ Sg(y),

one has

N(Sg(y), y) ⊂ Na
g (y) ⊂ N(S<g(y), y), ∀y ∈ dom g. (2.2)

Note that in the case of a semistrictly quasiconvex function f , the three cones coincide.

3. Single-directional property of multivalued maps. Let us recall that a
set-valued operator T : Y → 2Y

∗
is said to be

- quasimonotone on K ⊂ Y if, for all x, y ∈ K,

∃x∗ ∈ T (x) : 〈x∗, y − x〉 > 0⇒ ∀ y∗ ∈ T (y) : 〈y∗, y − x〉 ≥ 0.

- pseudomonotone on K ⊂ Y if, for all x, y ∈ K,

∃x∗ ∈ T (x) : 〈x∗, y − x〉 > 0⇒ ∀ y∗ ∈ T (y) : 〈y∗, y − x〉 > 0.

Definition 3.1. A set-valued operator T : Y → 2Y
∗

is said to be
- single-directional at y ∈ DomT if, T (y) ⊆ R+{y∗} for some y∗ ∈ T (y).
- locally single-directional at y ∈ DomT if there exists a neighbourhood U of y

such that for all y′ ∈ U , T (y′) is single-directional.
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Finally, T is said to be strictly single-directional (respectively locally strictly
single-directional) at y if T (y) ⊆ R++{y∗} for some y∗ 6= 0 (respectively T is strictly
single-directional at any point of some neighbourhood of y).

Dontchev and Hager showed in [8, Proposition 5.1], that a monotone set-valued
map which satisfies the Aubin property around a point (x, y) of its graph is actually
single-valued in a neighbourhood of x. The following proposition is the counterpart
of this result in the non-monotone case.

Proposition 3.2. Let T : Y → 2Y
∗

be a set-valued map satisfying the Aubin
property around a point (y, y∗) of its graph. Then

i) If y∗ 6= 0 and T is quasimonotone, then T is locally single-directional at y.
ii) If y∗ 6= 0 and T is pseudomonotone, then T is locally strictly single-directional

at y.
Proof. i) Let ε1, ε2 > 0 be such that B(y∗, ε1) ⊆ V and B(y, ε2) ⊆ U . Choose

ε < min{ε2, ε1/l, ‖y∗‖ /l}. For any x ∈ B(y, ε) one has

y∗ ∈ T (y) ∩ V ⊆ T (x) + l ‖x− y‖BY ∗(0, 1)

thus there exists x∗ ∈ T (x) such that x∗ ∈ B(y∗, lε) ⊆ V . In addition, ‖x∗‖ ≥
‖y∗‖ − lε > 0, hence x∗ 6= 0.

Now assume that T (x) * R+{x∗}, i.e., there exists z∗ ∈ T (x) such that z∗ /∈
R+{x∗}. Then we can find u ∈ BY (0, 1) with 〈z∗, u〉 > 0, 〈x∗, u〉 < 0 (see Lemma 3.3
in [11]). Choose t ∈ ]0,−〈x∗, u〉 /l[ such that xt := x+ tu ∈ U . Then

x∗ ∈ T (x) ∩ V ⊆ T (xt) + ltBY ∗(0, 1).

Thus, there exists x∗t ∈ T (xt) such that ‖x∗t − x∗‖ ≤ lt < −〈x∗, u〉. Thus,

〈x∗t , u〉 = 〈x∗, u〉+ 〈x∗t − x∗, u〉 ≤ 〈x∗, u〉+ ‖x∗t − x∗‖ < 0.

It follows that

〈x∗t , xt − x〉 = t 〈x∗t , u〉 < 0 (3.1)

whereas

〈z∗, xt − x〉 = t 〈z∗, u〉 > 0

contradicting quasimonotonicity of T .
ii) Arguing as in i), one can find x∗ ∈ T (x) ∩ V such that x∗ 6= 0. We choose

u ∈ BY (0, 1) such that 〈x∗, u〉 < 0. Considering again t ∈ ]0,−〈x∗, u〉 /l[ such that
xt := x+ tu ∈ U , we get 〈x∗t , x− xt〉 > 0 for some x∗t ∈ T (xt). The proof is complete
since, by pseudomonotonicity of T , 〈u∗, x− xt〉 > 0 for any u∗ ∈ T (x), and therefore
0 /∈ T (x).

Remark 3.3. a) Actually, in the quasimonotone case the proof of Proposition 3.2
shows something more: For x close to y, T (x) ⊆ R+{x∗} for some x∗ 6= 0, x∗ ∈ T (x).

b) Assuming only quasimonotonicity (or even pseudomonotonicity) of the map
T , there is no hope to obtain a general result with single-valuedness. Indeed, the set-
valued map T : R → 2R defined by T (x) = R++ is pseudomonotone and satisfies the
Aubin property (U , V any neighbourhoods, l any nonnegative number), the image does
not contain 0 but T is not single-valued.
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c) The following example shows that i) and ii) of Proposition 3.2 can fail if y∗ = 0.
Set X = R2 and

T (x) =
{
{x} if x 6= 0
{0} ∪

{
y : ‖y‖ = 1

}
if x = 0.

Then T is pseudomonotone. Choosing U = V = B(0, 1/2) and l = 1 we see that T
satisfies the Aubin property around (0, 0). But it is not single-directional at 0. Note
also that T is not lower semi-continuous (nor even lower sign-continuous, see [11])
at 0.

Whenever the map T is convex-valued, then the assumption y∗ 6= 0 can be
dropped. An operator T : Y → 2Y

∗
will be said to be trivial at y if T (y) = {0}.

Proposition 3.4. Let T : Y → 2Y
∗

be a quasimonotone set-valued map with
convex values and satisfying the Aubin property around a point (y, y∗) of its graph.
Then T is locally single-directional at y.

If moreover T is pseudomonotone, then there exists a neighbourhood U of y such
that for each u ∈ U , T is either strictly single-directional or trivial at u.

Proof. As in the proof of i) of Prop. 3.2, let ε1, ε2 > 0 be such that B(y∗, ε1) ⊆ V
and B(y, ε2) ⊆ U . Choose ε ∈ ] 0,min{ε2, ε1/l} [. For any x ∈ B(y, ε) one has x ∈ U
and

y∗ ∈ T (y) ∩ V ⊆ T (x) + l ‖x− y‖BY ∗(0, 1).

Thus there exists x∗ ∈ T (x) such that x∗ ∈ B(y∗, lε) ⊆ V . If x∗ 6= 0, according to
part i) of Prop. 3.2, T is single-directional at x. On the other hand, if T (x) = {x∗},
T is also trivially single-directional at x. Finally, assume that x∗ = 0 and that T (x)
contains at least one non zero element z∗. Then thanks to the convexity of T (x),
there exists w∗ ∈ [T (x) \ {0}] ∩ V . Obviously, T satisfies the Aubin property around
(x,w∗); since w∗ 6= 0, again by part i) of Prop. 3.2, T is single-directional at x. This
finishes the proof in case T is quasimonotone. The pseudomonotone case is similar.

4. Single-directional property of the normal operator. In this section,
we concentrate our attention on a particular multivalued map, namely the normal
operator Na

g associated to a quasiconvex function g, and we give sufficient conditions
for this operator to be single-directional. We restrict ourselves to the case where Y is
a reflexive Banach space, equipped with a norm such that both Y and Y ∗ are strictly
convex. The strict convexity of Y ∗ implies that the so-called duality map J : Y → 2Y

∗

which is defined by

J(y) = {y∗ ∈ Y ∗ : 〈y∗, y〉 = ‖y‖2 = ‖y∗‖2},

is singled-valued.

Let us fix some notation. If g : Y → R ∪ {+∞} is a lower semicontinuous
quasiconvex function and y an element of dom g \ arg min g, we will denote by π(y)
the projection of y on the nonempty closed convex cl(S<g(y)). Since Y is reflexive and
strictly convex, this projection exists and is unique. In the sequel we will assume
that the sublevel set Sg(y) (and/or the closure of the strict sublevel set cl(S<g(y))) is a
polyhedron that is a finite intersection of distinct halfspaces

H−(ai, bi) =
{
y ∈ Y : 〈ai, y〉 ≤ bi

}
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for i in a finite family I(Sg(y)). The associated hyperplanes will be denoted by
H(ai, bi).

For any y ∈ dom g, the -possibly empty- subset I(y) of I(Sg(y)) stands, roughly
speaking, for the set of indices of hyperplanes touching y, that is

I(y) =
{
i ∈ I(Sg(y)) : y ∈ H(ai, bi)

}
. (4.1)

Similarly, if cl(S<g(y)) is a polyhedron (say cl(S<g(y)) =
⋂
i∈I(cl(S<

g(y)))
H−(a′i, b

′
i)
)
, then

I<(y) =
{
i ∈ I(cl(S<g(y))) : π(y) ∈ H(a′i, b

′
i)
}
.

Note that for any y ∈ dom g \ arg min g, the index set I<(y) is nonempty.
Let us observe that a very simple example for which the sublevel sets are polyhedra

is the case of polyhedral quasiconvex functions.

We will need the following elementary lemma, whose proof is given for the sake
of completeness.

Lemma 4.1. Let C ⊂ Y be a nonempty convex set and let y /∈ cl(C). If π(y) is
the projection of y on cl(C), ρy = ‖y − π(y)‖ and

H−y =
{
u ∈ Y :

〈
J(y − π(y)), u− y

〉
≤ 0
}
,

then
a) N

(
B(C, ρy), y

)
= R+

{
J(y − π(y))

}
;

b) B(C, ρy) ⊂ H−y ;
c) For all x ∈ C, 〈J(y − π(y)), x− π(y)〉 ≤ 0.

Proof. Let us check first that for each y, a ∈ Y one has

N
(
B(a, ‖y − a‖), y

)
= R+J(y − a). (4.2)

Indeed,

y∗ ∈ N
(
B(a, ‖y − a‖), y

)
⇔ ∀u ∈ B(0, 1), 〈y∗, a+ ‖y − a‖u− y〉 ≤ 0

⇔ 〈y∗, y − a〉 ≥ sup
u∈B(0,1)

〈y∗, u〉 ‖y − a‖ = ‖y∗‖ ‖y − a‖

⇔ y∗ ∈ R+J(y − a).

Using relation (4.2) and the inclusion B (π(y), ρy) ⊂ B (C, ρy) we deduce:

N
(
B (C, ρy) , y

)
⊂ N

(
B (π(y), ρy) , y

)
= R+J(y − π(y)).

Since Y ∗ is strictly convex, J is single-valued; thus, a) follows. Assertion b) is an
immediate consequence of a). Finally, let us note that for all x ∈ C, x + y − π(y) ∈
B(C, ρy). Thus b) implies

〈J(y − π(y)), (x+ y − π(y))− y〉 ≤ 0

i.e., assertion c).
Recall that at any point y ∈ dom g \ arg min g, Na

g (y) is the polar cone at y of

the adjusted sublevel set Sag (y) = Sg(y) ∩ B
(
S<g(y), ρy

)
with ρy = dist(y, S<g(y)) =

‖y − π(y)‖.
Proposition 4.2. Let g : Y → R ∪ {+∞} be a lower semicontinuous quasiconvex

function and y be an element of dom g such that y 6∈ cl(S<g(y)) and Sg(y) is a polyhedron
with I(y) being a singleton (say I(y) = {i0}). Then the following assertions are
equivalent:
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i) Na
g is single-directional at y;

ii) Na
g (y) = R+

{
J(y − π(y))

}
;

iii) J(y − π(y))⊥H(ai0 , bi0);
iv) there exists a neighbourhood V of y such that[

B
(
S<g(y), ρy

)
∩ V

]
⊂
[
Sg(y) ∩ V

]
.

Proof. i)⇒ ii) Since Sag (y) ⊂ B
(
S<g(y), ρy

)
, we have N

(
B(S<g(y), ρy), y

)
⊂ Na

g (y)
and therefore, according to Lemma 4.1 a),

0 6= J(y − π(y)) ∈ Na
g (y).

Assertion ii) follows from the fact that Na
g is single-directional at y.

ii) ⇒ iii) Since Sag(y) ⊂ Sg(y) ⊂ H−(ai0 , bi0), it follows that

ai0 ∈ N(H−(ai0 , bi0), y) ⊂ N(Sg(y), y) ⊂ Na
g (y).

Thus, from ii) it exists λ > 0 such that J (y − π(y)) = λai0 , hence
J (y − π(y)) ⊥H(ai0 , bi0).
iii) ⇒ iv) Since I(y) = {i0} there exists ε > 0 such that B(y, ε)∩H(ai, bi) = ∅ for all
i 6= i0. From y ∈ H−(ai, bi) it follows that B(y, ε) ⊆ H−(ai, bi) for i 6= i0. Hence,

Sg(y)

⋂
B(y, ε) =

⋂
i [H−(ai, bi) ∩B(y, ε)]

= H−(ai0 , bi0)
⋂

[∩i 6=i0H−(ai, bi) ∩B(y, ε)]
= H−(ai0 , bi0)

⋂
B(y, ε).

(4.3)

On the other hand, by lemma 4.1 b),

B(S<g(y), ρy) ⊂ H−y = H−
(
J(y − π(y)), 〈J(y − π(y)), y〉

)
But from iii) it is clear that H−y = H−(ai0 , bi0) and thus, combining with (4.3), we
obtain for V = B(y, ε)[

B(S<g(y), ρy) ∩ V
]
⊂
[
H−(ai0 , bi0) ∩ V

]
= Sg(y) ∩ V.

iv) ⇒ i) From the definition of Sag (y) and assumption iv) we infer

Sag (y) ∩ V = B(S<g(y), ρy) ∩ Sg(y) ∩ V = B(S<g(y), ρy) ∩ V. (4.4)

Whenever C ⊆ Y is convex, x ∈ C and V is a neighbourhood of x, then N(C∩V, x) =
N(C, x). We calculate the normal cone Na

g (y) by using, successively, this remark,
equation (4.4) and Lemma 4.1 a):

Na
g (y) = N(Sag (y), y) = N(Sag (y) ∩ V, y)

= N(B(S<g(y), ρy) ∩ V, y)

= N(B(S<g(y), ρy), y) = R+{J(y − π(y))}.

Thus i) follows.
Remark 4.3. Let us observe that

I(y) = ∅ ⇐⇒ y ∈ int(Sg(y)).
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In this case, if y ∈ cl(S<g(y)) then Na
g (y) = N(S<g(y), y) and Na

g is single-directional at
y if and only if card(I<(y)) = 1.

Finally, if I(y) = ∅ and y ∈ int(Sg(y))\cl(S<g(y)) then it holds Na
g (y) = N(B(S<g(y), ρy), y)

and Na
g is single-directional at y.

Proposition 4.4. Let g : Y → R∪{+∞} be a lower semicontinuous quasiconvex
function and let y ∈ dom g be such that y 6∈ cl(S<g(y)). If Sg(y) and cl(S<g(y)) are
polyhedra and card

(
I(y)

)
6= card

(
I<(y)

)
, then Na

g is not locally single-directional at
y, that is, for any neighbourhood V of y,

∃ z ∈ V such that Na
g (z) is not single-directional.

Proof. Without loss of generality we can assume that card
(
I(y)

)
= 1. Indeed, if

card(I(y)) > 1 then the normal coneN(Sg(y), y) is not single-directional and therefore,
thanks to (2.2), this is also true for Na

g (y).
So let us now assume that I(y) = {i0}. If J(y − π(y)) 6⊥ H(ai0 , bi0) then the

conclusion follows directly from Proposition 4.2.

So suppose now that J(y − π(y)) ⊥ H(ai0 , bi0). Since I(y) = {i0} there exists
ε > 0 such that

B(y, ε) ∩ bd
(
Sg(y)

)
= B(y, ε) ∩H(ai0 , bi0). (4.5)

and thus, for any z ∈ B(y, ε) ∩ bd
(
Sg(y)

)
, I(y) = I(z). If ε is small enough, then we

know that z /∈ cl(S<g(y)), hence g(z) = g(y) and cl(S<g(y)) = cl(S<g(z)).
Let 0 < ε′ ≤ ε. Suppose that for all z ∈ B(y, ε′) ∩ bd

(
Sg(y)

)
, Na

g (z) is single-
directional. According to Proposition 4.2 and since I(y) = I(z) = {i0}, we have

J(z − π(z)) ⊥ H(ai0 , bi0), ∀ z ∈ B(y, ε′) ∩ bd
(
Sg(y)

)
.

In particular J(z−π(z)) and J(y−π(y)) are positive multiples of ai0 , so J
(
z−π(z)

)
=

λJ
(
y − π(y)

)
for some λ > 0. Thus,

z − π(z) = λ
(
y − π(y)

)
, (4.6)

because J is bijective and positively homogeneous [13].
Since y and z are elements of H(ai0 , bi0), it follows that〈

J
(
y − π(y)

)
, y − z

〉
= 0. (4.7)

Since π(z) ∈ cl
(
S<g(y)

)
, Lemma 4.1 c) implies

〈J(y − π(y)), π(z)− π(y)〉 ≤ 0. (4.8)

Likewise,

〈J(z − π(z)), π(y)− π(z)〉 ≤ 0. (4.9)

Combining (4.6), (4.8) and (4.9) we deduce〈
J
(
y − π(y)

)
, π(y)− π(z)

〉
= 0
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which, together with (4.7), implies〈
J
(
y − π(y)

)
, y − π(y)

〉
=
〈
J
(
y − π(y)

)
, z − π(z)

〉
.

Therefore, in (4.6) we obtain λ = 1, so

y − π(y) = z − π(z), ∀ z ∈ B(y, ε′) ∩H(ai0 , bi0). (4.10)

Thus for each z ∈ B(y, ε′) ∩ H(ai0 , bi0), z + (π(y) − y) = π(z) ∈ bd
(
cl(S<g(y))

)
. It

follows that the translation π(y)−y+B(y, ε′)∩H(ai0 , bi0) is included in bd
(
cl(S<g(y))

)
.

Obviously π(y) − y + B(y, ε′) = B(π(y), ε′) and π(y) − y + H(ai0 , bi0) = H(ai0 , ci0)
where ci0 = bi0 + 〈ai0 , π(y)− y〉. Hence

[B(π(y), ε′) ∩H(ai0 , ci0)] ⊂ bd
(
cl(S<g(y))

)
and thus I<(i0) = {i0} which contradicts card

(
I<(y)

)
6= card

(
I(y)

)
= 1.

5. Links with the metric regularity of solution maps. In this section we
will consider the solution map of the following general variational system, i.e. the
set-valued map R : X → 2Y defined by

R(x) = {y ∈ Y : 0 ∈ f(x, y) + T (y)} (5.1)

where X, Y are Banach spaces, f : X × Y → Y ∗ is a differentiable function and
T : Y → 2Y

∗
is a set-valued map. We will enlighten some links between the metric

regularity of the solution R and the single-directional property of the operator T
defining the variational system.

5.1. Solution map of general variational systems. In the following Theo-
rem 5.1, we provide some sufficient conditions under which the metric regularity of
the solution map R will imply that the operator T is locally single-directional.

Theorem 5.1. Let us suppose that f : X × Y → Y ∗ is strictly differentiable at
(x̄, ȳ) ∈ GrR and satisfies the ample parametrization condition: ∇xf(x̄, ȳ) is surjec-
tive. If the set-valued map T : Y → 2Y

∗
satisfies the following hypothesis

i) T is quasimonotone;
ii) −f(x̄, ȳ) 6= 0 or T is convex-valued in a neighbourhood of y;

iii) the solution map R is metrically regular around (x̄, ȳ),
then T is locally single-directional at ȳ.

The proof of Theorem 5.1 is based on Proposition 3.2, Proposition 3.4 and the
following result.

Theorem 5.2. Let X, Y and Z be Banach spaces. Suppose that f : X × Y → Z
is strictly differentiable at (x̄, ȳ) and satisfying the ample parametrization condition

∇xf(x̄, ȳ) is surjective.

Consider a set-valued map T : Y → 2Z such that (ȳ,−f(x̄, ȳ)) is an element of its
graph. Then the set-valued map S defined by

S(y) = {x ∈ X : 0 ∈ f(x, y) + T (y)}

satisfies the Aubin property around (x̄, ȳ) if and only if T satisfies the Aubin property
around (ȳ,−f(x̄, ȳ)).
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The above theorem, which is a particular case of [2, Corollary 3.5], is an extension
to the Banach space setting of the following results: [12, Theorem 1.57 and Corollary
1.59] for the single-valued case in Banach spaces, [10, Theorem 5.6] for T set-valued
map with locally closed graph in Asplund spaces and Exercise 3F.14 in the forthcoming
book [9] for T set-valued map in the finite dimension case.

Proof. of Theorem 5.1 As mentioned in Section 2, the metric regularity of the
set-valued map R around (x̄, ȳ) is equivalent to the fact that the set-valued map R−1

satisfies the Aubin property around (ȳ, x̄). But, according to Theorem 5.2, this also
equivalently express that the map T has the Aubin property around (ȳ,−f(x̄, ȳ)).
The conclusion follows from Proposition 3.2 if −f(x̄, ȳ) 6= 0 and from Proposition 3.4
if T is convex-valued.

Remark 5.3. The single-valuedness result of Dontchev and Hager was very re-
cently used by Mordukhovich [16] to show the failure of metric regularity for the so-
lution map R of the general variational systems (5.1) whenever the set-valued map T
is supposed to be monotone. The above Theorem 5.1 can also be considered as a non
metric regularity result for the general variational systems (5.1) in the quasimonotone
case and corresponds therefore to an counterpart of Theorem 5.1 of Mordukhovich
[16]. Indeed, by considering the contrapositive of Theorem 5.1, we obtain:

Suppose that f : X×Y → Y ∗ is strictly differentiable at (x̄, ȳ) ∈ GrR
and satisfies the ample parametrization condition: ∇xf(x̄, ȳ) is sur-
jective. If the set-valued map T : Y → 2Y

∗
is quasimonotone, convex-

valued in a neighbourhood of y and not locally single-directional at ȳ,
then the solution map R is not metrically regular around (x̄, ȳ).

5.2. Solution map of quasivariational inequalities with quasiconvex con-
straints. Like in §4, in this section Y stands for a reflexive Banach space, equipped
with a norm such that both Y and Y ∗ are strictly convex. We will focus our inter-
est on the particular case of the perturbed quasi-variational inequality problem (Px)
where for any y, the constraint set K(y) is the sublevel set of a given quasiconvex
function g. Depending of the kind of sublevel set (the large sublevel set Sg(y) or the
adjusted sublevel set Sag ), we will consider the following problems:

(P≤x ) Find ȳ ∈ Y such that

〈f(x, ȳ), y − ȳ〉 ≥ 0, ∀ y ∈ Y such that g(y) ≤ g(ȳ)

and

(P ax ) Find ȳ ∈ Y such that

〈f(x, ȳ), y − ȳ〉 ≥ 0, ∀ y ∈ Sag (ȳ)

where f : X × Y → Y ∗ is a differentiable function and g : Y → R ∪ {+∞} is a
lower semicontinuous quasiconvex function. The solution maps associated to those
problems will be denoted respectively by R≤ and Ra

R≤ : X → Y
x 7→ R≤(x) :=

{
y ∈ Y : y solution of (P≤x )

}
and

Ra : X → Y
x 7→ Ra(x) :=

{
y ∈ Y : y solution of (P ax )

}
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In the forthcoming Theorem 5.4, we show that the solution map R≤ of the above
problem (P≤x ) is not metrically regular at points (x, y) such that, roughly speaking,
the sublevel set Sg(y) is a polyhedron and y is on an edge of Sg(y). Taking into account
the specific hypothesis considered, this result, as well as the forthcoming Theorem 5.6,
is expressed here similarly as in Remark 5.3 but can also be formulated in the “positive
version” of Theorem 5.1.

Theorem 5.4. Let us suppose that f : X × Y → Y ∗ is strictly differen-
tiable at (x̄, ȳ) ∈ GrR≤ with ∇xf(x̄, ȳ) surjective and that the lower semicontinuous
semistrictly quasiconvex function g : Y → R ∪ {+∞} is such that Sg(ȳ) is a polyhedron
and card(I(ȳ)) > 1.

Then the solution map R≤ is not metrically regular around (x̄, ȳ).

Proof. Since g is semistrictly quasiconvex, one has Sg(u) = cl(S<g(u)) for any
u ∈ dom g and therefore N(S<g(u), u) = Na

g (u). Moreover, since card(I(ȳ)) > 1, Na
g is

not single-directional at ȳ. Now observe that

y ∈ R≤(x)⇔ −f(x, y) ∈ N(cl(S<g(y)), y) = Na
g (y)⇔ y ∈ Ra(x).

Thus the non metric regularity of the solution map R≤ follows from Theorem 5.1
since the normal operator Na

g is quasimonotone on Y (see [4, Prop. 3.3]).

Remark 5.5. The above result obviously holds also in the more general case
where Sg(ȳ) is not necessarily polyhedral, but there exists a neighbourhood U such that
Sg(ȳ)∩U can be written as the intersection of U with a polyhedron. The same is true,
for instance, for Proposition 4.4.

Now assuming some polyhedral structure of the strict sublevel set, the more
general case of quasiconvex functions will be obtained as a direct consequence of [4,
Prop. 3.3], Theorem 5.1 and Proposition 4.4.

Theorem 5.6. Let us suppose that f : X × Y → Y ∗ is strictly differentiable at
(x̄, ȳ) ∈ GrRa with ∇xf(x̄, ȳ) surjective, and the lower semicontinuous quasiconvex
function g : Y → R ∪ {+∞} is such that the sublevel sets Sg(ȳ) and cl(S<g(ȳ)) are
polyhedra and card

(
I(ȳ)

)
6= card

(
I<(ȳ)

)
.

Then the solution map Ra is not metrically regular around (x̄, ȳ).
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