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Abstract. In this paper, we introduce the class of multivalued relaxed
µ quasimonotone operators and establish the existence of solutions of varia-
tional inequalities for such operators. This result is compared with a recent
result of Bai et al on densely relaxed pseudomonotone operators. A similar
comparison regarding an existence result of Luc on densely pseudomonotone
operators is provided. Also, we introduce a broad class of functions, called
relaxed quasiconvex functions, and show that they are characterized by the
relaxed µ quasimonotonicity of their subdifferentials. The results strengthen
a variety of other results in the literature.
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1 Introduction

Let X be a normed space with norm ‖ · ‖ and dual space X∗. Let K be a
nonempty convex subset of X and T : K → 2X∗\{∅} a multivalued operator.
The Stampacchia variational inequality problem for T is to find x ∈ K such
that

∀y ∈ K, ∃x∗ ∈ T (x) : 〈x∗, y − x〉 ≥ 0. (1)

The usual assumptions for proving the existence of solutions for (1)
involve some kind of upper semicontinuity, and some kind of generalized
monotonicity for the operator T . Various generalized monotonicity assump-
tions were used, such as: T is pseudomonotone (Refs. 1, 2 ); T is quasi-
monotone, single valued, and K has inner points (Ref. 3 ); T is properly
quasimonotone (Ref. 4 ); T is single-valued and densely pseudomonotone
(Ref. 5 ); T is quasimonotone (without any assumption on the existence of
inner points) (Ref. 6 ). A different kind of generalization, namely relaxed
monotonicity (or else weak monotonicity, or global hypomonotonicity) was
considered by various authors in relation with algorithms for finding a solu-
tion of variational inequalities or equilibrium problems; see, e.g., Refs. 7, 8 .
However, in these papers existence of a solution of the variational inequality
was assumed rather than shown.

Recently, those different generalizations were combined and existence of
solutions of (1) was shown for the case of single valued, densely relaxed µ
pseudomonotone operators (Refs. 9, 10 ).

In the present paper we will introduce the broader class of multivalued
relaxed µ quasimonotone operators and establish the existence of solutions
of (1) for such operators. This is done in Section 2, where we also com-
pare our main result with a recently obtained result for densely relaxed
pseudomonotone operators (Ref. 10 ). With an analogous method, we in-
vestigate the relation of densely pseudomonotone operators introduced by
Luc (Ref. 5 ) to properly quasimonotone operators. In Section 3 we intro-
duce a broad class of functions, called relaxed µ quasiconvex functions, and
show that they are characterized by the relaxed µ quasimonotonicity of their
subdifferentials.

We fix the notation and introduce some definitions. Given x, y ∈ X, we
will denote by [x, y] the line segment

{x + t(y − x) : t ∈ [0, 1]}.

A multivalued operator T : K → 2X∗\{∅} is called upper hemicontinuous
if its restriction to line segments of K is upper semicontinuous with respect
to the weak∗ topology of X∗. If T is single valued, it is called hemicontinuous
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if its restriction to line segments of K is continuous with respect to the weak∗

topology of X∗. We denote by S(T, K) the set of solutions of the variational
inequality (1):

x ∈ S(T,K) ⇐⇒ x ∈ K and ∀y ∈ K, ∃x∗ ∈ T (x) : 〈x∗, y − x〉 ≥ 0.

Also, we denote by LM(T, K) the set of local solutions (Ref. 6 ) of the Minty
variational inequality

x ∈ LM(T, K) ⇐⇒ x ∈ K and ∃U : ∀y ∈ K ∩U,∀y∗ ∈ T (y), 〈y∗, y−x〉 ≥ 0

where U is a neighborhood of x.
The following definition generalizes Definition 2.1.(ii) of Ref. 10 to the

multivalued case. Let µ > 0 be given.

Definition 1.1 A multivalued operator T : K → 2X∗\{∅} is called relaxed
µ quasimonotone if for all x, y ∈ K and x∗ ∈ T (x), y∗ ∈ T (y), the following
implication holds:

〈x∗, y − x〉 > 0 ⇒ 〈y∗, y − x〉 ≥ −µ ‖y − x‖2 .

We also introduce the relaxed Minty variational inequality

∀y ∈ K,∀y∗ ∈ T (y), 〈y∗, y − x〉 ≥ −µ‖y − x‖2 (2)

and denote by RM(T, K) the set of x ∈ K that satisfy (2).
We recall that a set-valued mapping G : K → 2X is said to be a

KKM mapping if for any {x1, ..., xn} ⊂ K, co{x1, ..., xn} ⊂
n⋃

i=1

G(xi), where

co{x1, ..., xn} denotes the convex hull of x1, ..., xn. For the convenience of the
reader we reproduce the fundamental lemma of Ky Fan on KKM mappings
(Ref. 11 ).

Lemma 1.1 Assume that K is a nonempty compact convex subset of a
Hausdorff topological vector space X. Let K0 ⊆ K be nonempty and G :
K0 → 2K a KKM mapping. If G(x) is closed in X for each x in K0, then⋂

x∈K0

G(x) 6= ∅.

2 Existence Result

We introduce the following definition. Let µ > 0 be given.
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Definition 2.1 An operator T : K → 2X∗\{∅} is said to be properly re-
laxed µ quasimonotone if for all x1, · · · , xn ∈ K, and all x ∈ co{x1, · · · , xn},
there exists i ∈ {1, · · · , n} such that

∀x∗ ∈ T (xi), 〈x∗, xi − x〉 ≥ −µ‖xi − x‖2.

Proposition 2.1 If T is properly relaxed µ quasimonotone then it is re-
laxed µ quasimonotone.

Proof. Let x, y ∈ K and x∗0 ∈ T (x) be such that 〈x∗0, y − x〉 > 0. Set
xt = x + t(y − x), t ∈ (0, 1). Since T is µ properly relaxed quasimonotone
we have either

〈x∗, x− xt〉 ≥ −µ ‖x− xt‖2 , ∀x∗ ∈ T (x), ∀t ∈ (0, 1) (3)

or
〈y∗, y − xt〉 ≥ −µ ‖y − xt‖2 , ∀y∗ ∈ T (y), ∀t ∈ (0, 1). (4)

However, (3) implies that

〈x∗0, y − x〉 ≤ µt ‖y − x‖2 ∀t ∈ (0, 1)

which clearly contradicts 〈x∗0, y − x〉 > 0. Thus (4) holds. Taking the limit
in (4) as t → 0 we deduce that

〈y∗, y − x〉 ≥ −µ ‖y − x‖2 , ∀y∗ ∈ T (y)

i.e., T is relaxed µ quasimonotone.

Lemma 2.1 Let K be a nonempty convex subset of a normed space X. If
T : K → 2X∗\{∅} is upper hemicontinuous with weakly∗ compact values,
then RM(T,K) ⊆ S(T, K).

Proof. Assume to the contrary that there exists x ∈ RM(T, K) such
that x /∈ S(T,K). Then there exists y ∈ K such that 〈x∗, y − x〉 < 0 for
all x∗ ∈ T (x). Since T (x) is weakly∗ compact, there exists ε > 0 such that
〈x∗, y − x〉 < −ε for all x∗ ∈ T (x).

If we set
V = {x∗ ∈ X∗ : 〈x∗, y − x〉 < −ε}

then V is an weak∗– open set such that T (x) ⊆ V . Set xt = ty + (1 − t)x,
t ∈ (0, 1]. By upper hemicontinuity, there exists δ > 0 such that T (xt) ⊆ V
for all t ∈ (0, δ), i.e.,

〈x∗, y − x〉 < −ε, , ∀t ∈ (0, δ), ∀x∗ ∈ T (xt). (5)

4



On the other hand, since x ∈ RM(T,K), there exists a constant µ such
that for all t ∈ (0, δ) and all x∗ ∈ T (xt) we have

〈x∗, xt − x〉 = t 〈x∗, y − x〉
≥ −µ ‖xt − x‖2

= −µt2 ‖y − x‖2

i.e.,
〈x∗, y − x〉 ≥ −µt ‖y − x‖2 . (6)

It is clear that for t small enough, (5) contradicts (6). Therefore RM(T,K) ⊆
S(T, K).

We deduce that the following alternative holds for every relaxed µ quasi-
monotone operator.

Proposition 2.2 Let K be a nonempty, convex subset of a normed space
X and let T : K → 2X∗\{∅} be relaxed µ quasimonotone. Then, one of the
following assertions holds:

(i) T is properly relaxed µ quasimonotone;
(ii) LM(T, K) 6= ∅.

Proof. Suppose that T is not properly relaxed µ quasimonotone. Then
there exist xi ∈ K, x∗i ∈ T (xi), i = 1, . . . , n and x ∈ co{x1, x2, . . . , xn} such
that

〈x∗i , xi − x〉 < −µ‖x− xi‖2, i = 1, . . . , n.

Since the functions 〈x∗i , xi − ·〉+ µ‖ · −xi‖2 are continuous, there exists a
neighborhood U of x such that for every z ∈ K ∩ U ,

〈x∗i , xi − z〉 < −µ‖z − xi‖2. (7)

Since T is relaxed µ quasimonotone, it follows that for every i = 1, . . . , n
and every z∗ ∈ T (z),

〈z∗, z − xi〉 ≥ 0.

Using x ∈ co{x1, x2, . . . , xn} we deduce that

∀z ∈ K ∩ U, ∀z∗ ∈ T (z), 〈z∗, z − x〉 ≥ 0.

This means that x ∈ LM(T,K) thus LM(T, K) 6= ∅.
The above alternative entails our main existence result.

Proposition 2.3 Let K be a nonempty, compact, convex subset of a normed
space X and let T : K → 2X∗\{∅} be relaxed µ quasimonotone and upper
hemicontinuous with weakly∗ compact values. Then S(T, K) 6= ∅.
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Proof. According to the preceding proposition, we have either LM(T, K) 6=
∅ or that T is properly relaxed µ quasimonotone. If LM(T,K) 6= ∅ then we
know that S(T, K) 6= ∅ (Ref. 6 ). On the other hand, if T is properly relaxed
µ quasimonotone, define the multivalued mapping G : K → 2X∗\{∅} by

G(x) = {y ∈ K : 〈x∗, x− y〉 ≥ −µ‖x− y‖2, ∀x∗ ∈ T (x)}.

For every x1, . . . , xn ∈ K and y ∈ co{x1, x2, . . . , xn}, proper relaxed
quasimonotonicity implies that y ∈

⋃n
i=1 G(xi). In addition, for each x ∈

K, G(x) is closed; thus, if K is compact, then for each x ∈ K, G(x) is
also compact. By Lemma 1.1, one has

⋂
x∈K G(x) 6= ∅, which implies that

RM(T, K) 6= ∅. Finally by Lemma 2.1 we obtain again S(T, K) 6= ∅.
Below we derive a useful consequence for problem (1) over unbounded

sets. We will make use of the following coercivity condition for an operator
T : K → 2X∗\{∅}:

∃ρ > 0 such that ∀x ∈ K\B(0, ρ),

∃y ∈ K such that ‖y‖ < ‖x‖ and 〈x∗, x− y〉 ≥ 0, ∀x∗ ∈ T (x) (C)

Theorem 2.1 Let K be a convex unbounded subset of a normed space X
and let T : K → 2X∗\{∅} be upper hemicontinuous and relaxed µ quasi-
monotone on K with weakly∗ compact values, satisfying coercivity condition
(C). Suppose that there exists ρ′ > ρ such that K ∩ B(0, ρ′) is nonempty
and compact. Then S(T,K) 6= ∅.

Proof. Set Kρ′ = K ∩ B(0, ρ′). By Proposition 2.3, the set S(T, Kρ′) is
nonempty. Choose x0 ∈ S(T, Kρ′). According to coercivity condition (C),
there exists y0 ∈ B(0, ρ′) ∩K such that

〈x∗, x0 − y0〉 ≥ 0, ∀x∗ ∈ T (x0). (8)

(If ‖x0‖ < ρ′ we can take y0 = x0). Now, for every y ∈ K, choose
t ∈ (0, 1) such that (1 − t)y + ty0 ∈ Kρ′ . Since x0 ∈ S(T,Kρ′), there exists
x∗ ∈ T (x0) such that

〈x∗, (1− t)y + ty0 − x0〉 ≥ 0. (9)

Multiplying (8) by t and adding to (9) yields

〈x∗, y − x0〉 ≥ 0

which means that x0 ∈ S(T,K).
Note that, in Theorem 2.1, the condition of compactness of K ∩ B(0, ρ′)

is satisfied automatically if K is locally compact.
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In order to compare our results with those existing in the literature, we
recall some definitions. Given a convex subset K of X, a set K0 ⊆ K is called
segment-dense in K if for every x ∈ K there exists x0 ∈ K0 such that x is
a cluster point of the set [x, x0] ∩K0. Given µ > 0, a single-valued operator
T : K → X∗ is called relaxed µ pseudomonotone at x ∈ K if for every y ∈ K
the following implication holds

〈T (x), y − x〉 ≥ 0 ⇒ 〈T (y), y − x〉 ≥ −µ ‖x− y‖2 . (10)

The operator T is called densely relaxed µ pseudomonotone if there exists
a segment-dense set K0 ⊆ K such that T is relaxed µ pseudomonotone at
every x ∈ K0. In Ref. 10 , it was shown that if K is compact and T is
single valued, hemicontinuous and densely relaxed µ pseudomonotone, then
the variational inequality problem has a solution. In order to compare with
Proposition 2.3 we first show:

Proposition 2.4 Assume that the operator T : K → X∗ is densely re-
laxed µ pseudomonotone and hemicontinuous. Then T is properly relaxed µ
quasimonotone.

Proof. Suppose that T is not properly relaxed µ quasimonotone. Then
there exist x1, x2, . . . xn ∈ K, x =

∑n
i=1 λixi with λi > 0 and

∑n
i=1 λi = 1

such that
−µ ‖x− xi‖2 > 〈T (xi), xi − x〉 , i = 1, 2, . . . n. (11)

By assumption, there exists v ∈ X and a sequence (tk)k∈N converging to
zero, such that T is relaxed µ pseudomonotone at xk = x+ tkv, k ∈ N. From
(11) follows that for k sufficiently large,

−µ
∥∥xk − xi

∥∥2
>

〈
T (xi), xi − xk

〉
, i = 1, 2, . . . n.

Since T is relaxed µ pseudomonotone at xk we deduce that〈
T (xk), xi − xk

〉
< 0. (12)

For k sufficiently large one has xk ∈ co{x1, x2, . . . xn}. Then (12) implies〈
T (xk), xk − xk

〉
< 0, a contradiction.

As the previous proposition shows, hemicontinuity together with densely
relaxed µ pseudomonotonicity imply that T is properly relaxed µ quasi-
monotone. In particular, T is relaxed µ quasimonotone, thus the existence
result in Ref. 10 can be derived from Proposition 2.3. It should be noted
that properly relaxed µ pseudomonotonicity implies that RM(T,K) 6= ∅ (see
the proof of Proposition 2.3), hence the assumptions in Ref. 10 imply that
RM(T, K) 6= ∅. This is not the case when T is only relaxed µ quasimonotone.

7



Likewise, in Ref. 5 a single-valued operator T : K → X∗ is called
pseudomonotone at x ∈ K if for every y ∈ K the following implication
holds:

〈T (y), x− y〉 ≥ 0 ⇒ 〈T (x), x− y〉 ≥ 0.

The operator is called densely pseudomonotone if it is pseudomonotone
for every x in a segment-dense subset K0 of K. Note that the difference with
the definition of dense relaxed µ pseudomonotonicity is not simply that one
takes µ = 0. However, by a suitable modification of the proof of Proposition
2.4 we obtain a similar result.

Proposition 2.5 Assume that the operator T : K → X∗ is densely pseudomonotone
and hemicontinuous. Then T is properly quasimonotone.

Proof. Suppose that T is not properly µ quasimonotone. Then there
exist x1, x2, . . . xn ∈ K, x =

∑n
i=1 λixi with λi > 0 and

∑n
i=1 λi = 1 such

that
〈T (xi), x− xi〉 > 0, i = 1, 2, . . . n.

By assumption, there exist vi ∈ X and sequences (tki )k∈N converging to
0 as k → +∞, such that T is pseudomonotone at xk

i = xi + tki v. Set
xk =

∑n
i=1 λix

k
i . Then xk

i → xi and xk → x strongly and T (xk
i ) ⇀ T (xi) in

the weak∗ topology as k → +∞, thus for k sufficiently large,〈
T (xk

i ), x
k − xk

i

〉
> 0, i = 1, 2, . . . n.

Since T is pseudomonotone at xk
i we deduce that〈

T (xk), xk − xk
i

〉
> 0.

From the definition of xk we infer that
〈
T (xk), xk − xk

〉
> 0, a contradic-

tion.

3 Relaxed quasiconvex functions

In this section, nonsmooth relaxed quasiconvex functions will be introduced.
We will show that they are characterized by the relaxed quasimonotonicity
of their subdifferential.

Throughout this section, X denotes a Banach space with a ∂-smooth
renorming (Ref. 12 ). Given a l.s.c. function f : X → R∪{+∞}, ∂f denotes
any subdifferential of f (see Ref. 12 ). We need the following approximate
mean value inequality result from Ref. 12 .
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Lemma 3.1 Let a, b ∈ X with a ∈ dom f and a 6= b, and let r ∈ R be such
that r ≤ f(b). Then there exist c ∈ [a, b], c 6= b, and sequences xn → c and
x∗n ∈ ∂f(xn) such that

lim inf
n→+∞

〈x∗n, c− xn〉 ≥ 0 and lim inf
n→+∞

〈x∗n, b− a〉 ≥ r − f(a).

Definition 3.1 A l.s.c. function f : X → R ∪ {+∞} will be called relaxed
µ quasiconvex if for all x, y ∈ X the following implication holds

∃x∗ ∈ ∂f(x) : 〈x∗, y−x〉 > 0 ⇒ ∀z ∈ [x, y], f(y) ≥ f(z)−µ ‖y − z‖ ‖y − x‖ .
(13)

In order to understand the above definition, it is useful to compare it with
the characterization of quasiconvex functions in Ref. 13 : A l.s.c. function is
quasiconvex if and only if

∃x∗ ∈ ∂f(x) : 〈x∗, y − x〉 > 0 ⇒ ∀z ∈ [x, y], f(y) ≥ f(z).

Proposition 3.1 Let X be a Banach space with a ∂-smooth renorming and
f : X → R ∪ {+∞} be a l.s.c. function. If ∂f is relaxed µ quasimonotone,
then f is relaxed µ quasiconvex.

Proof. Suppose that ∂f is relaxed µ quasimonotone. Let x ∈ dom ∂f ,
y ∈ dom f , x 6= y, and z ∈ [x, y], z 6= y be such that

f(y) < f(z)− µ ‖y − z‖ ‖y − x‖ .

Then we can find µ0 > µ such that

f(z) > f(y) + µ0 ‖y − z‖ ‖y − x‖ .

Letting r = f(y)+µ0 ‖y − z‖ ‖y − x‖ and applying Lemma 3.1 to y and z,
we can find c ∈ [y, z], c 6= z and sequences xn converging to c and x∗n ∈ ∂f(xn)
satisfying

lim inf
n→+∞

〈x∗n, c− xn〉 ≥ 0 and lim inf
n→+∞

〈x∗n, z − y〉 ≥ µ0 ‖y − z‖ ‖y − x‖ .

Letting u = c + t(z − y) with t > 0, we find

lim inf
n→+∞

〈x∗n, u− xn〉 ≥ lim inf
n→+∞

〈x∗n, c− xn〉+ lim inf
n→+∞

t〈x∗n, z − y〉

≥ 0 + tµ0 ‖y − z‖ ‖y − x‖
= µ0 ‖u− c‖ ‖y − x‖ .
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In particular, taking u = x we deduce

lim inf
n→+∞

〈x∗n, x− xn〉 ≥ µ0 ‖x− c‖ ‖y − x‖

> µ lim
n→+∞

‖x− xn‖2

since limn→+∞ ‖x− xn‖ = ‖x− c‖ ≤ ‖y − x‖. Hence, for n sufficiently large,

〈x∗n, x− xn〉 > µ ‖x− xn‖2 .

By relaxed µ quasimonotonicity of ∂f , we have

∀x∗ ∈ ∂f(x) : 〈x∗, x− xn〉 ≥ 0

for n sufficiently large. Letting n → +∞, it follows that for all x∗ ∈ ∂f(x)

〈x∗, x− c〉 ≥ 0,

and so
〈x∗, x− y〉 = [‖x− y‖ / ‖x− c‖]〈x∗, x− c〉 ≥ 0.

Thus, ∂f is relaxed µ quasiconvex, and the proof is completed.
The converse of Proposition 3.1 also holds for a fairly large class of sub-

differentials. Consider the so-called “dag subdifferential” (Ref. 14 ):

∂†f(x) := {x∗ ∈ X∗ : 〈x∗, v〉 ≤ lim sup
t↘0,w→x

f(w + t(v + x− w))− f(w)

t
, ∀v ∈ X}.

The dag subdifferential is larger than most known subdifferentials. For
instance, it is larger than the Gâteaux subdifferential, the upper Dini subd-
ifferential, the Clarke-Rockafellar subdifferential etc. Consequently, it is also
larger than the proximal subdifferential and the Fréchet subdifferential.

Proposition 3.2 Assume that ∂ is any subdifferential such that ∂f(x) ⊆
∂†f(x), for every x ∈ X. If f is relaxed µ quasiconvex, then ∂f is relaxed µ
quasimonotone.

Proof. Obviously, it is sufficient to show that ∂†f is relaxed µ quasi-
monotone. Assume that f is relaxed µ quasiconvex. Let 〈x∗, y − x〉 > 0 for
some x∗ ∈ ∂†f(x). Then 〈x∗, w − x〉 > 0 for every w ∈ X sufficiently close
to y. Relaxed µ quasiconvexity of f implies

f(w + t(x− w))− f(w) ≤ µt ‖w − x‖2 ,∀t ∈ [0, 1].
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So, for all y∗ ∈ ∂†f(y),

〈y∗, x− y〉 ≤ lim sup
t↘0,w→y

f(w + t(x− y + y − w)− f(w)

t

≤ lim sup
t↘0,w→y

µ ‖w − x‖2

= µ ‖y − x‖2 ,

i.e.,
〈y∗, y − x〉 ≥ −µ ‖y − x‖2 ,

which implies ∂†f is relaxed µ quasimonotone. This completes the proof.
Especially, if f is a Gâteaux differentiable function, and if we set z = x

in the right-hand side of (13), then from Proposition 3.1 we also get the
following property: if ∇f is relaxed µ quasimonotone, then there exists a
ν > 0 such that the following implication holds:

〈∇f(x), y − x〉 > 0 ⇒ f(y) ≥ f(x)− ν ‖x− y‖2 . (14)

(Actually, ν = µ). The following example shows that a differentiable
function f may satisfy (14) while ∇f is not relaxed µ quasimonotone for any
µ.

Example 3.1 Let f1 : [0, +∞) → R be a function with the following prop-
erties: 0 ≤ f1 ≤ 1, f1 is differentiable on [0, +∞) with f ′1 ≥ 0 and f ′1(

1
n
) = n3.

See the end of the example for the construction of such a function. Define
f : R → R by

f(x) =

{
−x2(1 + f1(x)), x > 0

−x2, x ≤ 0.

This function is differentiable and

f ′(x) =


−2x(1 + f1(x))− x2f ′1(x) < 0, x > 0
0, x = 0
−2x > 0, x < 0.

We show that f satisfies (14). Assume that f ′(x)(y−x) > 0. If f ′(x) > 0,
then x < 0 and y > x. If x < y ≤ 0 then

f(y) = −y2 > −x2 − 2(y − x)2.

If y > 0 then

f(y) = −y2(1 + f1(y)) ≥ −2y2 > −x2 − 2(y − x)2.
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In the second case f ′(x) < 0, we have x > 0 and y < x. If y ≤ 0 then

f(y) = −y2 > −x2 − (y − x)2 ≥ −x2(1 + f1 (x))− 2(y − x)2.

Finally, if 0 < y < x, then f ′1 ≥ 0 implies that f1(y) ≤ f1(x) thus

f(y)− f(x) ≥ (x2 − y2)(1 + f1(x)) > −2(y − x)2.

Thus, (14) holds with ν = 2. On the other hand, f ′ is not relaxed µ
quasimonotone for any µ. Indeed, assume that f ′ is relaxed µ quasimonotone.
For every y > 0 and every x < 0 one has f ′(x)(y − x) > 0 thus we should
have

f ′(y) ≥ −µ(y − x). (15)

Taking y = 1
n

we find

f ′(
1

n
) ≥ − 1

n2
f ′1(

1

n
) = −n → −∞.

Thus it is clear that (15) is not possible.
A note on the construction of the function f1: set In =

[
1
n
− 1

4n5 ,
1
n

+ 1
4n5

]
.

These intervals are disjoint. Let g be any continuous nonnegative function
such that g = 0 on R\

⋃
n≥1In and on each In takes its maximum value at

1
n

with g( 1
n
) = n3. This g is integrable with

∫
R g ≤

∑
n≥1n

3 1
2n5 = π2

12
< 1.

Finally, define f1 : [0, +∞) → R by

f1(x) =

∫ x

0

g(t)dt.

This function f1 has all desired properties.

12



References

1. Cottle, R. W., and Yao, J. C., Pseudomonotone Complementarity
Problems in Hilbert Spaces, Journal of Optimization Theory and Appli-
cations, Vol. 75, pp. 281–295, 1992.

2. Crouzeix, J. P., Pseudomonotone Variational Inequality Problems:
Existence of Solutions, Mathematical Programming, Vol. 78, pp. 305–
314, 1997.

3. Hadjisavvas, N., and Schaible, S., Quasimonotone Variational In-
equalities in Banach Spaces, Journal of Optimization Theory and Ap-
plications, Vol. 90, pp. 95–111, 1996.

4. Daniilidis, A., and Hadjisavvas, N., On the Subdifferentials of
Pseudoconvex and Quasiconvex Functions and Cyclic Monotonicity,
Journal of Mathematical Analysis and Applications, Vol. 237, pp. 30–42,
1999.

5. Luc, D.T., Existence Results for Densely Pseudomonotone Variational
Inequalities, Journal of Mathematical Analysis and Applications, Vol.
254, pp. 291–308, 2001.

6. Aussel, D., and Hadjisavvas, N., On Quasimonotone Variational
Inequalities, Journal of Optimization Theory and Applications, Vol. 121,
pp. 445–450, 2004.

7. Farouq, N.L., Convergent Algorithm Based on Progressive Regular-
ization for Solving Pseudomonotone Variational Inequalities, Journal of
Optimization Theory and Applications, Vol. 120, pp. 455–485, 2004.

8. Konnov, I. V., Partial Proximal Point Method for Nonmonotone Equi-
librium Problems, Optimization Methods and Software, Vol. 21, pp. 373–
384, 2006.

9. Bai, M. R., Zhou, S. Z., and Ni, G. Y., Variational-like Inequalities
with Relaxed η−α pseudomonotone Mappings in Banach Spaces, Applied
Mathematics Letters, Vol. 19, pp. 547–554, 2006.

10. Bai, M.R., Zhou, S.Z., and Ni, G.Y., On Generalized Monotonic-
ity of Variational Inequalities, Computers & Mathematics with Appli-
cations, to appear.

11. Fan, K., A Generalization of Tychonoff’s Fixed Point Theorem, Math-
ematische Annalen, Vol. 142, pp. 305–310, 1961.

13



12. Aussel, D., Corvellec, J.N., and Lassonde, M., Mean Value
Property and Subdifferential Criteria for Lower Semicontinuous Func-
tions, Transactions of the American Mathematical Society, Vol. 347, pp.
4147–4161, 1995.

13. Aussel, D., Subdifferential Properties of Quasiconvex and Pseudocon-
vex Functions: Unified Approach, Journal of Optimization Theory and
Applications, Vol. 97, pp. 29–45, 1998.

14. Penot, J.P., Are Generalized Derivatives Useful for Generalized Con-
vex Functions? Generalized Convexity, Generalized Monotonicity,
Edited by J.-P. Crouzeix, J.-E. Mart́ınez-Legaz and M. Volle, Kluwer
Academic Publishers, Dordrecht, pp. 3–59, 1998.

14


