Questions for review on Math 202

Elements of Differential Equations

Prepared by

Mohammad Samman

Department of Mathematics and Statistics KFUPM

May 2008

- 1. State what is meant by Differential Equations.
- 2. Do you know any application for Differential Equations; give some examples.
- **3.** Write a brief classification with examples of the types of DEs that you studied in your course Math 202.
- 4. Does every differential equation have a solution.
- 5. If we know a solution for a given DE, is it necessarily to be unique?
- 6. What do we mean by an initial value Problem?
- **7.** What do we mean by Cauchy-Euler differential equation? Give an example and show how to solve such type of equations.

8.	Complete	the	follov	ving	table
----	----------	-----	--------	------	-------

Equation	Order	Linear / Nonlinear
$y' = 10 + y^2$		
$x^2 dy + 5xy dx = 0$		
$y = 2xy' + y(y')^2$		
$y''+y = \tan x$		
y'' - 5 y' + 6y = 0		
$y'+3x(y'')^3=\sin x$		
$y'+3\sin x y'' = \cos x$		

- **9.** Classify the following 1st Order ODE as Separable, Linear in y (or in x), Homogeneous (with its degree), Bernoulli, or Exact.
 - **i.** $(y + y^2)dx (x + x^2)dy = 0$
- **ii.** $(y xy^2)dy = ydx$
- iii. $(e^{y/x} + e^{x^3/y^3} + 1)dy = (1 + \ln(y/x))dx$

iv.
$$\frac{dy}{dx} = \sqrt{x^2 - y^2}$$

v. $3\frac{dy}{dx} = 4x - y$

10. Solve
$$x^2 \frac{dy}{dx} = y - xy$$

11. Solve $x \frac{dy}{dx} - y = x^2 \sin x$
12. Solve the initial value problem $(e^x + y)dx + (2 + x + ye^y)dy = 0, y(0) = 1.$
13. Solve the initial value problem $\frac{dy}{dx} = \cos(x + y), y(0) = \pi/4$

- **14.** Solve $x \frac{dy}{dx} (1+x)y = xy^2$
- **15.** Solve $(y^2 xy)dx + x^2dy = 0$
- **16.** Is $y = xe^{-2x}$ a solution to y'' + 4y' + 4y = 0?
- 17. How many solutions are there to the initial value problem $\frac{1}{x^2}\frac{dy}{dx} + y^2 = \frac{1}{x}$, y(0) = 2. Justify your answer.
- **18.** The Population of a Community is known to increase at a rate Proportional to the number of People present at any time. The Population of the community is doubled after 5 years and it is10,000 after 3 years. What was the initial population. What will be the Population after 10 years.
- **19.** If $y_1 = \ln x$ is a solution of the equation xy'' + y' = 0, use **reduction of order** Or an appropriate formula to find a second solution.
- **20.** Solve the boundary value problem: y'' 10y' + 25y = 0, y(0) = 1, y(1) = 0.
- **21.** Find the general solution of the following **Cauchy-Euler Equation** $2x^2y'' + 5xy' + y = 0$
- 22. Find the solution of the BVP $y^{(4)} + y'' = 0$ satisfying the conditions: $y(0) = 0, y(\pi) = 0, y'(0) = 1, y'(\pi) = -1$
- 23. Write a homogeneous linear differential equation whose auxiliary equation is $5m^5 2m^3 + 4m = 0$
- **24.** Given $y_1 = x \sin(linx)$ a solution of the DE $x^2y'' xy' + 2y = 0$. Find another solution for this equation.

- **25.** Using Wronskian show that the functions 1, 1/x and log *x* are linearly independent on the interval $(0, \infty)$.
- **26.** Show that 1, *x*, sin *x*, cos *x* form **a Fundamental Set of the solutions** of the Differential Equation $y^{(4)} + y'' = 0$ on $(-\infty, \infty)$.
- 27. Use the method of Variation of Parameters to find the general solution of the differential equation $\frac{d^2y}{dx^2} + y = \sin x$
- 28. Solve the above question using the method of Undetermined Coefficients.
- **29.** Solve the DE: $y''' xy'' = 8x^2$.
- **30.** If $y_p = u_1 y_1 + u_2 y_2 + u_3 y_3$ is a particular solution of $y^{(3)} + 9y^{(1)} = \tan x$, then find: (i) y_1, y_2, y_3 (ii) u'_1, u'_2, u'_3
- **31.** Find all Singular Points of the ODE and classify them as regular or irregular singular point: $x^3(x^2-9)y''-2x^2(x+3)y'+(x-3)y=0$
- **32.** Use the **Power Series method** to find the General solution of the DE $y'' 4xy' 4y = e^x$ about $x_0 = 0$.
- **33.** Show that $x_0 = 0$ is a regular singular point of the differential equation $(6x + 2x^3)y'' + 21xy' + 9(x^2 1)y = 0$.

Then find the **Indicial Equation** and its roots about $x_0 = 0$.

34. Use Gauss-Jordan Elimination Method, to solve the system

$$s-t+u+v = 0$$

$$2s+2u = 0$$

$$s+t+u-v = 0$$

$$-s-3t-u+3v = 0$$

- **35.** Find the inverse of *A*, if it exists, where $A = \begin{bmatrix} 0 & 2 & 4 \\ 2 & 4 & 2 \\ 3 & 3 & 1 \end{bmatrix}$
- **36.** Find the eigen values of the matrix $A = \begin{bmatrix} 1 & 2 & -1 \\ 1 & 0 & 1 \\ 4 & -4 & 5 \end{bmatrix}$, and find the

corresponding eigen vectors.

37. Solve the system

$$\frac{dx}{dt} = x$$
$$\frac{dy}{dt} = 2x + 2y - z$$
$$\frac{dz}{dt} = y$$

38. Solve the system

$$\frac{dx}{dt} = 3x + 4y$$
$$\frac{dy}{dt} = -4x + 3y$$

39. Solve the system

$$X' = \begin{bmatrix} 1 & 3 & -3 \\ 0 & 1 & 0 \\ 6 & 3 & -8 \end{bmatrix} X$$

40. Solve the following non homogeneous system

$$X' = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix} X + \begin{bmatrix} 0 \\ te^{t} \\ e^{t} \end{bmatrix}$$

41. Let
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ -2 & -2 & -2 \end{pmatrix}$$
.

Compute e^{At} and then use it to find the general solution of the system

$$X' = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ -2 & -2 & -2 \end{pmatrix} X .$$