Questions for review on Math 202

Elements of Differential Equations

Prepared by
Mohammad Samman
Department of Mathematics and Statistics KFUPM

May 2008

1. State what is meant by Differential Equations.
2. Do you know any application for Differential Equations; give some examples.
3. Write a brief classification with examples of the types of DEs that you studied in your course Math 202.
4. Does every differential equation have a solution.
5. If we know a solution for a given DE , is it necessarily to be unique?
6. What do we mean by an initial value Problem?
7. What do we mean by Cauchy-Euler differential equation? Give an example and show how to solve such type of equations.
8. Complete the following table

Equation	Order	Linear / Nonlinear
$y^{\prime}=10+y^{2}$		
$x^{2} d y+5 x y d x=0$		
$y=2 x y^{\prime}+y\left(y^{\prime}\right)^{2}$		
$y^{\prime \prime}+y=\tan x$		
$y^{\prime \prime}-5 y^{\prime}+6 y=0$		
$y^{\prime}+3 x\left(y^{\prime \prime}\right)^{3}=\sin x$		
$y^{\prime}+3 \sin x y^{\prime \prime}=\cos x$		

9. Classify the following $1^{\text {st }}$ Order ODE as Separable, Linear in \boldsymbol{y} (or in \boldsymbol{x}), Homogeneous (with its degree), Bernoulli, or Exact.
i. $\left(y+y^{2}\right) d x-\left(x+x^{2}\right) d y=0$
ii. $\left(y-x y^{2}\right) d y=y d x$
iii. $\left(e^{y / x}+e^{x^{3} / y^{3}}+1\right) d y=(1+\ln (y / x)) d x$
iv. $\frac{d y}{d x}=\sqrt{x^{2}-y^{2}}$
v. $3 \frac{d y}{d x}=4 x-y$
10. Solve $x^{2} \frac{d y}{d x}=y-x y$
11. Solve $x \frac{d y}{d x}-y=x^{2} \sin x$
12. Solve the initial value problem $\left(e^{x}+y\right) d x+\left(2+x+y e^{y}\right) d y=0, y(0)=1$.
13. Solve the initial value problem $\frac{d y}{d x}=\cos (x+y), y(0)=\pi / 4$
14. Solve $x \frac{d y}{d x}-(1+x) y=x y^{2}$
15. Solve $\left(y^{2}-x y\right) d x+x^{2} d y=0$
16. Is $y=x e^{-2 x}$ a solution to $y^{\prime \prime}+4 y^{\prime}+4 y=0$?
17. How many solutions are there to the initial value problem $\frac{1}{x^{2}} \frac{d y}{d x}+y^{2}=\frac{1}{x}, \quad y(0)=2$. Justify your answer.
18. The Population of a Community is known to increase at a rate Proportional to the number of People present at any time. The Population of the community is doubled after 5 years and it is 10,000 after 3 years. What was the initial population. What will be the Population after 10 years.
19. If $y_{1}=\ln x$ is a solution of the equation $x y^{\prime \prime}+y^{\prime}=0$, use reduction of order Or an appropriate formula to find a second solution.
20. Solve the boundary value problem: $y^{\prime \prime}-10 y^{\prime}+25 y=0, y(0)=1, y(1)=0$.
21. Find the general solution of the following Cauchy-Euler Equation

$$
2 x^{2} y^{\prime \prime}+5 x y^{\prime}+y=0
$$

22. Find the solution of the BVP $y^{(4)}+y^{\prime \prime}=0$ satisfying the conditions:

$$
y(0)=0, y(\pi)=0, y^{\prime}(0)=1, y^{\prime}(\pi)=-1
$$

23. Write a homogeneous linear differential equation whose auxiliary equation is

$$
5 m^{5}-2 m^{3}+4 m=0
$$

24. Given $y_{1}=x \sin (\operatorname{lin} x)$ a solution of the $\operatorname{DE} x^{2} y^{\prime \prime}-x y^{\prime}+2 y=0$. Find another solution for this equation.
25. Using Wronskian show that the functions $1,1 / x$ and $\log x$ are linearly independent on the interval $(0, \infty)$.
26. Show that $1, x, \sin x, \cos x$ form a Fundamental Set of the solutions of the Differential Equation $y^{(4)}+y^{\prime \prime}=0$ on $(-\propto, \propto)$.
27. Use the method of Variation of Parameters to find the general solution of the differential equation $\frac{d^{2} y}{d x^{2}}+y=\sin x$
28. Solve the above question using the method of Undetermined Coefficients.
29. Solve the DE: $y^{\prime \prime \prime}-x y^{\prime \prime}=8 x^{2}$.
30. If $y_{p}=u_{1} y_{1}+u_{2} y_{2}+u_{3} y_{3}$ is a particular solution of $y^{(3)}+9 y^{(1)}=\tan x$, then
find:
(i) y_{1}, y_{2}, y_{3}
(ii) $u_{1}^{\prime}, u_{2}^{\prime}, u_{3}^{\prime}$
31. Find all Singular Points of the ODE and classify them as regular or irregular singular point: $\quad x^{3}\left(x^{2}-9\right) y^{\prime \prime}-2 x^{2}(x+3) y^{\prime}+(x-3) y=0$
32. Use the Power Series method to find the General solution of the DE

$$
y^{\prime \prime}-4 x y^{\prime}-4 y=e^{x} \quad \text { about } x_{0}=0
$$

33. Show that $x_{0}=0$ is a regular singular point of the differential equation

$$
\left(6 x+2 x^{3}\right) y^{\prime \prime}+21 x y^{\prime}+9\left(x^{2}-1\right) y=0
$$

Then find the Indicial Equation and its roots about $x_{0}=0$.
34. Use Gauss-Jordan Elimination Method, to solve the system

$$
\begin{aligned}
& s-t+u+v=0 \\
& 2 s+2 u=0 \\
& s+t+u-v=0 \\
& -s-3 t-u+3 v=0
\end{aligned}
$$

35. Find the inverse of A, if it exists, where $A=\left[\begin{array}{lll}0 & 2 & 4 \\ 2 & 4 & 2 \\ 3 & 3 & 1\end{array}\right]$
36. Find the eigen values of the matrix $A=\left[\begin{array}{ccc}1 & 2 & -1 \\ 1 & 0 & 1 \\ 4 & -4 & 5\end{array}\right]$, and find the corresponding eigen vectors.
37. Solve the system

$$
\begin{aligned}
& \frac{d x}{d t}=x \\
& \frac{d y}{d t}=2 x+2 y-z \\
& \frac{d z}{d t}=y
\end{aligned}
$$

38. Solve the system

$$
\begin{aligned}
& \frac{d x}{d t}=3 x+4 y \\
& \frac{d y}{d t}=-4 x+3 y
\end{aligned}
$$

39. Solve the system

$$
X^{\prime}=\left[\begin{array}{ccc}
1 & 3 & -3 \\
0 & 1 & 0 \\
6 & 3 & -8
\end{array}\right] X
$$

40. Solve the following non homogeneous system

$$
X^{\prime}=\left[\begin{array}{lll}
2 & 1 & 1 \\
1 & 2 & 1 \\
1 & 1 & 2
\end{array}\right] X+\left[\begin{array}{l}
0 \\
t e^{t} \\
e^{t}
\end{array}\right]
$$

41. Let $A=\left(\begin{array}{ccc}1 & 1 & 1 \\ 1 & 1 & 1 \\ -2 & -2 & -2\end{array}\right)$.

Compute $e^{A t}$ and then use it to find the general solution of the system

$$
X^{\prime}=\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & 1 & 1 \\
-2 & -2 & -2
\end{array}\right) X
$$

