Q 26. Show that the right circular cylinder of greatest volume that can be inscribed in a right circular cone has volume that is 4/9 the volume of the cone.

Solution:

Oluti	·OII·					
1	Draw the Diagram			H	H-h r R	
2	Identify & Label the	• <u>Cone</u> : Height = H; Radius = R				
	Unknowns	• Cylinder: Height = h; Radius = r				
		• V	olume	of Cylinder = V		
3	Identify the Variable to be Optimized	V				
4	Relation among the Variables	$V = \pi r^2 h$				
5	Side Conditions (See Fig.)	$[(H-h)/h] = [r/R]$; $h = H(R-r)/R$ $0 \le r \le R$				
6	Convert Main Equation To	$V = \pi r^2 h = \pi r^2 H(R-r)/R$				
	Equation of One Variable	$= \pi H (r^2 R - r^3)/R$				
7	Find C.N. of V	$dV/dr = \pi H r(2R-3r)/R = 0$				
		C.N: r = 2R/3				
8	Use 2 nd Deriv. To test C.N	$V'' = \pi H (2R-6r)/R;$				
		V''(2R/3)<0 [Maxim at C.N.]*				
9	Test the	r	h	V	V will be	
	C.N. and 0, R for	0	H	0		
	Max/Mini Values	2R/3	H/3	$4\pi R^2H/27$	Maxim*	
		R	0	0		

Q 38. A trapezoid is inscribed in a semicircle of radius 2 so that one side is along the diameter. Find the maximum possible area of the trapezoid.

So	Solution:							
	1	Draw the Diagram:			1			
		[Place the Diameter of the	1		1		···/b	
		Semicircle on x – axis with					h	
		its center at the Origin 0]			L	<u>'θ</u>		→
		Join O to the Upper Right	B (2,0)		0	2 cos	θ E	C (2,0)
		Vertex D of Trapezium.			1			
	2	Identify & Label the	• <u>T</u> 1	rapez	ium: Lar	ger Sid	le Lengtl	n = L
		Unknowns	Sn	naller	Side Len	gth =	l; Heigh	nt = h
			• A	rea of	Trapeziu	m = A		
					$cop = \theta$			
	3	Identify the Variable to be				A		
		Optimized						
	4	Relation among the						
		Variables			A =	h(<i>l</i> + 1	L)/2	
	5	Side Conditions (See Fig.)	L=	4; h =	$= 2 \sin \theta$; l=2	(OE) = 4	$\cos \theta$
						$\theta \leq \pi/2$		
	6	Convert Main Equation To	A= s	in θ	(4+4 cos (θ)= 4($\sin \theta$ – σ	$\cos \theta \sin \theta$)
		Equation of One Variable						
	7	Find C.N. of A	dA	laθ	= 4(cos t	9 _ sin	$^{2}\theta$ + cos	$(s^2 \theta) = 0$:
	'	rmu C.N. or A	uzs	vuo		$\theta = \pi/2$, , ,
	8	Use 2 nd Deriv. To test C.N			$A^{\prime\prime} = 4 \sin \theta$)
	ð	Use 2 Deriv. 10 test C.N						
				⇒.	$A''\left(\frac{\pi}{3}\right) < 0$	⇒lvia	xim at C	.IV."
	9	Test the	θ	L	I	h	A	A will be
		C.N. and 0 , $\pi/3$	0	2	2	0	0	
		Max/Mini Values	$\pi/3$	4	2	$\sqrt{3}$	$3\sqrt{3}$	Maxim*
			$\pi/2$	0	0	2	0	
			1012	-	0			
_								

Q 51. Find all points on the curve $x^2 - y^2 = 1$ closest to (0,2).

oluti	on:					
1	Draw the Diagram: {Sketch the cuve $x^2 - y^2 = 1$ in xy-plane. The point A (0,2) will be on y-axis.} Note: Midpoint of the base of Rectangle must be on the Origin.	$ \begin{array}{c c} & P(x,y) \\ \hline & 1 \\ \end{array} $				
2	Identify & Label the Unknowns	 Point on the Curve: P (x,y) Fixed Point: A (0,2) (Distance between A and P)²: S 				
3	Identify the Variable to be Optimized	S				
4	Relation among the Variables	$S = x^2 + (y - 2)^2$				
5	Side Conditions (See Fig.)	$x^2 = 1 + y^2$				
6	Convert Main Equation To	$S = (1 + y^2) + (y - 2)^2$				
	Equation of One Variable	$=2y^2-4y+5$				
7	Find C.N. of S	dS/dy = 4y - 4 = 0; $y = 1$				
8	Use 2 nd Deriv. To test C.N	$S''=4 \Longrightarrow S''(1)>0 \Longrightarrow Minim at C.N.*$				
9	Test the	y x S A will be				
	C.N. and 0 , 4 for	1 $\pm\sqrt{2}$ 3 Minim*				
	Max/Mini Values	Ans. Shortest Distance between P and A(x,y)				
		will be $\sqrt{3}$ when $x = \sqrt{3}$ or $-\sqrt{3}$ and $y = 1$				