Q 8. A rectangle has its 2 lower corners on the x-axis and 2 upper corners on the curve $y = 16 - x^2$. For all such rectangles, what are the dimensions of the one with largest area?

Solution:

solu	tion:	<u> </u>					
1	Draw the Diagram:						
2	{Sketch the cuve $y = 16 - x^2$ in xy-plane and place the Rectangle BCDE inside the curve as required in Q 8.} Note: Midpoint of the base of Rectangle must be on the Origin. Identify & Label the	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
4		3.00					
	Unknowns	B = $(-x,0)$					
		• Rectangle's: Length = L; Width = W					
2	T1. ('C (1 X7 ' 11 (1	Area of Rectangle = A					
3	Identify the Variable to be Optimized	A					
4	Relation among the Variables	A = L W					
5	Side Conditions (See Fig.)	L= $2x$; W = $16-x^2$; $0 \le x \le 4$;					
6	Convert Main Equation To	$A = L W = 2x (16 - x^2)$					
	Equation of One Variable	$=32x-2x^{3}$					
7	Find C.N. of A	$dA/dx = 32 - 6x^2 = 0$; $x = 4/\sqrt{3}$					
8	Use 2 nd Deriv. To test C.N	$A'' = -4x \Rightarrow A'' \left(\frac{4}{\sqrt{3}} \right) < 0 \Rightarrow \text{Maxim at C.N.*}$					
9	Test the	x L W A A will be					
	C.N. and 0, 4	0 0 16 0					
	Max/Mini Values	$\frac{4}{\sqrt{3}}$ $\frac{8}{\sqrt{3}}$ $\frac{32}{3}$ $\frac{256}{3\sqrt{3}}$ Maxim*					
		4 8 0 0					

Q 19. An open box is to be made from a 3 ft by 8 ft rectangular piece of sheet metal by cutting out squares of equal size from the 4 corners and bending up the sides. Find the maximum volume that the box can have.

So

lutio				-					
1	Draw the Diagram. [From each corner of the Rectangle, cut a square of side length x]	3			8	A.			
2	Identify & Label the Unknowns	 Side Length of Removed Square = x Box: Length= L; Width=W; Height = H 							
		• Volume of Box = V							
3	Identify the Variable to be Optimized	V							
4	Relation among the Variables	V = L W H							
5	Side Conditions (See Fig.)	L=8-2x; W=3-2x; H=x; $0 \le x \le \frac{3}{2}$							
6	Convert Main Equation To	V = L W H = x (8-2x) (3-2x)							
	Equation of One Variable	$=4x^3-22x^2+24x$							
7	Find C.N. of V	$dV/dx = 12 x^2 - 44x + 24 = 4(3x - 2) (x - 3) = 0$ C.N: $x = 2/3$; [Note: $x = 3$ does not satisfy (5)]							
8	Use 2 nd Deriv. To test C.N	V'' = 24x - 44; $V''(2/3) < 0$ [Maxim at C.N.]*							
9	Test the	x	L	W	H	V	V will be		
	C.N. and 0, 4	0	8	3	0	0			
	for Max/Mini Values	2/3	20/3	5/3	2/3	200/27	Maxim*		
		3/2	5	0	3/2	0			