- Use the $\epsilon \delta$ definition to prove that $\lim_{x \to 2} \frac{1}{x} = \frac{1}{2}$. 1.
- 2. Find the limit of each of the following:

(a)
$$\lim_{x \to 5} \frac{x^2 - 25}{|x - 5|}$$

(b)
$$\lim_{x \to 1} \frac{x^3 - 1}{x^2 - 1}$$

(c)
$$\lim_{x \to 2} \frac{x^2 - x + 6}{x - 2}$$

(d)
$$\lim_{x \to 0^-} \left[\frac{1}{x} - \frac{1}{|x|}\right]$$

(e)
$$\lim_{x \to -\infty} \frac{\sqrt{9x^6 - x}}{x^3 + 1}$$

(f)
$$\lim_{x \to 0^+} \frac{\sin^3 x}{x^3}$$

(g)
$$\lim_{x \to 0^+} (1 + x)^{1/x}$$

(h)
$$\lim_{x \to 1} \sin^{-1} \left(\frac{1 - \sqrt{x}}{1 - x}\right)$$

(i)
$$\lim_{x \to \infty} \frac{e^{3x}}{x^4}$$

(h)
$$\lim_{x \to 1} \sin^{-1} \left(\frac{1 - \sqrt{x}}{1 - x} \right)$$

(i)
$$\lim_{x \to \infty} \frac{e^{3x}}{x^4}$$

(i) $\lim_{x \to \infty} \frac{\tan x - x}{\tan x - x}$

(J)
$$\lim_{x \to 0} x^3$$

(k) $\lim_{x \to 0^+} (\cos x)^{1/x^2}$

Find the derivative y' for each of the following: 3.

(a)
$$y = \sqrt{e^{2x} - \csc^3 x}$$

(b) $y = \frac{\sec^2 5x^2 + 1}{1 + \cos^{-1} x}$
(c) $xy = \cot(xy)$
(d) $yx + 1 = 3\tan^{-1} y$
(e) $y = \sin(\tan\sqrt{\sin x})$
(f) $x = 10^{\sin x^2}$

(f)
$$y = 10^{\sin x}$$

- 4. If $x^4 + y^4 = 16$, show that $y'' = -48\frac{x^2}{y^7}$.
- 5. Suppose f is a one-to-one differentiable function and its inverse f^{-1} also differentiable. Use implicit differentiation to show that

$$\frac{d}{dx} \left[f^{-1}(x) \right] = \frac{1}{f'[f^{-1}(x)]}, \text{ where } f' \neq 0.$$

- 6. Use the definition of derivative to show that $\frac{d}{dx}[\log_b x] = \frac{1}{x \ln b}$, x > 0.
- 7. show that the equation $4x^3 6x^2 + 3x 2 = 0$ has a real root between 1 and 2.
- 8. Show that the function f(x) = |x 3| is continuous everywhere.
- 9. Given

$$f(x) = \begin{cases} x^2 & \text{if } x \ge 0\\ e^x & \text{if } x < 0. \end{cases}$$

Discuss the continuity of f at x = 0.

10. Find the horizontal and vertical asymptotes of the graph of $f(x) = \frac{\sqrt{2x^2 + 1}}{3x - 5}$.

- 11. Find the critical points of $f(x) = 4x^{3/5} x^{8/5}$.
- 12. Find the absolute max and absolute min of $f(x) = x^4 2x^2 + 3$ on [-2, 3].
- 13. Sketch the graph of $\frac{2x-5}{x+3}$.
- 14. State Rolle's theorem and verify that the function $f(x) = \sin 2\pi x$ satisfies the hypotheses of Rolle's theorem on the interval [-1, 1]. Then find a number c that satisfies its conclusion on this interval.

15. Is it true that the equation y = y''' + 5y' - 6 is satisfied by y = x?

16. Is it true that the inverse function of
$$y = \sin x$$
 is $y = \frac{1}{\sin x}$?

17. Is it true that the function $y = \ln x$ is differentiale everywhere?

18. Is it true that if
$$k(x) = f(g(x))$$
, then $\frac{d^2k}{dx^2} = f'(g) \cdot g'' + f''(g) \cdot (g')^2$?

19. What is the error in the following steps:

$$\lim_{x \to 0} \frac{\sin x}{x^2} = \lim_{x \to 0} \frac{\cos x}{2x} = \lim_{x \to 0} \frac{-\sin x}{2} = 0$$

and determine the correct value of this limit.

20. Use local linear approximation to approximate $\sin 29^{\circ}$.