1. Use the $\epsilon-\delta$ definition to prove that $\lim _{x \rightarrow 2} \frac{1}{x}=\frac{1}{2}$.
2. Find the limit of each of the following:
(a) $\lim _{x \rightarrow 5} \frac{x^{2}-25}{|x-5|}$
(b) $\lim _{x \rightarrow 1} \frac{x^{3}-1}{x^{2}-1}$
(c) $\lim _{x \rightarrow 2} \frac{x^{2}-x+6}{x-2}$
(d) $\lim _{x \rightarrow 0^{-}}\left[\frac{1}{x}-\frac{1}{|x|}\right]$
(e) $\lim _{x \rightarrow-\infty} \frac{\sqrt{9 x^{6}-x}}{x^{3}+1}$
(f) $\lim _{x \rightarrow 0} \frac{\sin ^{3} x}{x^{3}}$
(g) $\lim _{x \rightarrow 0^{+}}(1+x)^{1 / x}$
(h) $\lim _{x \rightarrow 1} \sin ^{-1}\left(\frac{1-\sqrt{x}}{1-x}\right)$
(i) $\lim _{x \rightarrow \infty} \frac{e^{3 x}}{x^{4}}$
(j) $\lim _{x \rightarrow 0} \frac{\tan x-x}{x^{3}}$
(k) $\lim _{x \rightarrow 0^{+}}(\cos x)^{1 / x^{2}}$
3. Find the derivative y^{\prime} for each of the following:
(a) $y=\sqrt{e^{2 x}-\csc ^{3} x}$
(b) $y=\frac{\sec ^{2} 5 x^{2}+1}{1+\cos ^{-1} x}$
(c) $\quad x y=\cot (x y)$
(d) $y x+1=3 \tan ^{-1} y$
(e) $y=\sin (\tan \sqrt{\sin x})$
(f) $y=10^{\sin x^{2}}$
4. If $x^{4}+y^{4}=16$, show that $y^{\prime \prime}=-48 \frac{x^{2}}{y^{7}}$.
5. Suppose f is a one-to-one differentiable function and its inverse f^{-1} also differentiable. Use implicit differentiation to show that

$$
\frac{d}{d x}\left[f^{-1}(x)\right]=\frac{1}{f^{\prime}\left[f^{-1}(x)\right]}, \quad \text { where } \quad f^{\prime} \neq 0
$$

6. Use the definition of derivative to show that $\frac{d}{d x}\left[\log _{b} x\right]=\frac{1}{x \ln b}, \quad x>0$.
7. show that the equation $4 x^{3}-6 x^{2}+3 x-2=0$ has a real root between 1 and 2 .
8. Show that the function $f(x)=|x-3|$ is continuous everywhere.
9. Given

$$
f(x)= \begin{cases}x^{2} & \text { if } x \geq 0 \\ e^{x} & \text { if } x<0\end{cases}
$$

Discuss the continuity of f at $x=0$.
10. Find the horizontal and vertical asymptotes of the graph of $f(x)=\frac{\sqrt{2 x^{2}+1}}{3 x-5}$.
11. Find the critical points of $f(x)=4 x^{3 / 5}-x^{8 / 5}$.
12. Find the absolute max and absolute min of $f(x)=x^{4}-2 x^{2}+3$ on $[-2,3]$.
13. Sketch the graph of $\frac{2 x-5}{x+3}$.
14. State Rolle's theorem and verify that the function $f(x)=\sin 2 \pi x$ satisfies the hypotheses of Rolle's theorem on the interval $[-1,1]$. Then find a numnber c that satisfies its conclusion on this interval.
15. Is it true that the equation $y=y^{\prime \prime \prime}+5 y^{\prime}-6$ is satisfied by $y=x$?
16. Is it true that the inverse function of $y=\sin x$ is $y=\frac{1}{\sin x}$?
17. Is it true that the function $y=\ln x$ is differentiale everywhere?
18. Is it true that if $k(x)=f(g(x))$, then $\frac{d^{2} k}{d x^{2}}=f^{\prime}(g) \cdot g^{\prime \prime}+f^{\prime \prime}(g) \cdot\left(g^{\prime}\right)^{2}$?
19. What is the error in the following steps:

$$
\lim _{x \rightarrow 0} \frac{\sin x}{x^{2}}=\lim _{x \rightarrow 0} \frac{\cos x}{2 x}=\lim _{x \rightarrow 0} \frac{-\sin x}{2}=0
$$

and determine the correct value of this limit.
20. Use local linear approximation to approximate $\sin 29^{\circ}$.

