How to Use Mathematica to solve Some Problems of Mathematics

1. Introduction

With the help of Mathematica, we can do

- i. Arithmatic and Algebraic Manipulations,
- ii. Solve Different Types of Equations,
- iii. Sketch Graphs of Functions and Equations.

2. How to Start

- i. Click on the icon "Mathematica".
- ii. Click on the new file.
- iii. Type your operation
- iv. Press the keys:

Shift & Enter

(We shall call these two keys: [SE] keys)

v. You will find the Answer in the Next Line.

3. Basic Algebra Operations

Addition: + Subtration: - Square root: sqrt
Division: / Power: ^ Multiplication: *

(Example)

Example 1. Type: 5+3 outside the Existing Cell

- i. Press the [SE] keys.
- ii. You will get on the screen:

Example 2. Type: -7^3 outside the Existing Cell

- i. Press the [SE] keys.
- ii. You will get on the screen:

$$In [2] := -7^3$$

 $Out [2] = -343$

Example 3. Type: $4 + \frac{1}{4}$ outside the Existing Cell

- i. Press the [SE] keys.
- ii. You will get on the screen:

In
$$[3]$$
:= $4 + \frac{1}{4}$
Out $[3]$ = $\frac{17}{4}$

Example 4. Type: **4.** + $\frac{1}{4}$

- i. Press the [SE] keys.
- ii. You will get on the screen:

$$In [4] := 4.+1/4$$
 $Out [4] = 4.25$

[Check the difference between Examples 3 & 4]

Example 5. Type: $2 ^ (1/3)$

- i. Press the [SE] keys.
- ii. You will get on the screen:

$$In [5]:= 2^{(1/3)}$$
Out $[5]= 2^{1/3}$

Example 6. Type: N[2 ^ (1/3)]

- i. Press the [SE] keys.
- ii. You will get on the screen:

$$In [6] := N[2 ^ (1/3)]$$
 $Out [6] = 1.25992$

Example 7. Type: 2 ^ (1/3) //N

- i. Press the [SE] keys.
- ii. You will get on the screen:

In [7]:=
$$2 ^ (1/3) //N$$

Out [7]= 1.25992

[Check the difference among Examples 5, 6 & 7]

4. Built in Functions

ii zuiii ii i uii viii ii			
For	Type	For	Туре
-2	Abs[-2]	e ²	Exp[2]
sin(5 radian)	Sin[5]	$\sin^{-1}(.3)$	ArcSin[.3]
sin(5 Degrees)	Sin[5 Degree]	sinh(5)	Sinh[5]
Natural Log		Log of 5	
of 5	Log[5]	to base 3	Log[3,5]

Try the following Exercises

- a. Find cos(30) and cos(30°). Use the methods of Examples 5 & 7. Explain the answers.
- b. Find ln(7.8), log(15), log₄(9), e ⁸, tan²(12)
- c. Evaluate: $5-2(8^2-60)/4$ [Ans: 3]
- d. Evaluate: $\sqrt{9} \frac{1}{3} + \frac{4(18 4^3)}{8}$
- e. Evaluate: $2\sin^{-1}(1/3) \cosh^{2}(4/5)$.

5. Manipulating Algebraic Expressions

Example 1: Find the value of $6-3x^5$ for x=3.

Solution: Type: $6-3*x^5/.x \rightarrow 3$ i. Press the [SE] keys. You will get:

In
$$[6]$$
:= $6-3*x^5/.x \rightarrow 3$
Out $[6]$ = -723

Example 2: Find the value of $\sqrt{x^2 + y^2}$ when y=x+1 and x=3.

Solution: Type: x = 3; y = x + 1; $sqrt[x^2 + y^2]$

Press the [SE] keys. You will get:

In [6]:=
$$x = 3$$
; $y = x + 1$; $sqrt[x^2 + y^2]$
Out [6] = 5

Example 3: Expand $(x+y)^5$.

Solution: Type: Clear[x,y]; Expand[$(x+y)^5$]

Press the [SE] keys. You get

In [6]:= Clear[x,y]; Expand[$(x+y)^5$]

Out
$$[6] = x^5 + 5xy^4 + 10x^3y^2 + 10x^2y^3 + 5xy^4 + y^5$$

6. Solving Equations Numerically

Example 1: (Eq. of one variable)

Solve the equation $x^2 + x = 2$ in x.

Solution: Type: Solve[$x^2+x==2$, x]

Press the [SE] keys. You will get:

In [1]:= Solve[$x^2+x==2$, x]

Out
$$[1] = \{\{x \to -2\}, \{x \to 1\}\}$$

Example 2: (Eq. of two variables)

Solve the equation $x^2 - 4 = 0$, $y^2 = x^2$ in x & y.

Solution: Type:

Solve[$\{x^2-4==0, x^2=y^2\}, \{x,y\}$]

Press the [SE] keys. You will get:

In [2]:=

Solve[$\{x^2-4=0, x^2=y^2\}, \{x,y\}$]

Out [2]=

$$\{\{x \to -2, y \to -2\}, \{x \to -2, y \to 2\}, \{x \to 2, y \to -2\}, \{x \to 2, y \to 2\}\}$$

Example 3: (Complicated Equation)

Solve the equation $\ln\left(x+\sqrt{1+x^2}\right) == 2$ in x.

Solution: Type:

Solve[Log[x+Sqrt[$1+x^2$]]==2, x]

Press the [SE] keys. You will get:

In [3]:=

Solve $[Log[x+Sqrt[1+x^2]]==2, x]$

Out
$$[3] = \left\{ \left\{ x \to \frac{1}{2} e^{-2} \left(-1 + e^4 \right) \right\} \right\}.$$

7. Solving Equations Symbolically

Example 1: (Eq. of two variables)

Solve the equation $x^2 - k^2 = 0$, $y^2 = x^2$ in x & y.

Solution: Type:

Solve[$\{x^2 - k^2 = 0, x^2 = y^2\}, \{x,y\}$]

Press the [SE] keys. You will get:

In [2]:=

Solve[$\{x^2-k^2=0, x^2=y^2\}, \{x,y\}$]

Out [2]=

$$\left\{\left\{x\rightarrow -k,y\rightarrow -k\right\},\left\{x\rightarrow -k,y\rightarrow k\right\},\left\{x\rightarrow k,y\rightarrow -k\right\},\left\{x\rightarrow k,y\rightarrow k\right\}\right\} \cdot$$

Example 2: (Complicated Equation)

Solve the equation $\ln\left(x+\sqrt{a+x^2}\right) == b$ in x.

Solution: Type:

Solve[Log[x+Sqrt[a+x^2]]==b, x]

Press the [SE] keys. You will get:

In [3]:=

Solve[Log[x+Sqrt[a+x^2]]==b, x]

Out
$$[3] = \left\{ \left\{ x \to \frac{1}{2} e^{-b} \left(-a + e^{2b} \right) \right\} \right\}.$$

8. Numerical Solutions of Equation(s)

Example 1: Find the roots of the equation:

$$x^3 + x + 1 = 0$$
.

Solution: Type:

 $NSolve[x^3+x+1==0, x]$

Press the [SE] keys. You will get:

In [1]:= $NSolve[x^3+x+1==0, x]$

Out [2]=

$$\begin{cases}
\{x \to -0.682328\}, \\
\{x \to 0.341164 - 1.16154i\}, \{x \to 0.341164 + 1.16154i\}
\end{cases}$$

Example 2: Find solution of the system of equations:

$$x + y = 2, x - 3y + z = 3, x - y + z = 0$$
.

Solution: Type:

NSolve
$$[x + y = 2, x - 3y + z = 3, x - y + z = 0, \{x, y, z\}]$$

Press the [SE] keys. You will get:

In/27:=

NSolve
$$[x + y = 2, x - 3y + z = 3, x - y + z = 0], \{x, y, z\}$$

Out
$$[2] = \{ \{x \to 3.5, y \to -1.5, z \to -5.\} \}$$
.

Example 3: Find approximate solution of the equation:

$$3\cos x = \ln x$$

starting the approximation at x=1

Solution: Type:

$$FindRoots \left[3\cos[x] = Log[x], \{x, 1\} \right]$$

Press the [SE] keys. You will get:

In [3]:= FindRoots
$$\left[3\cos[x] == \operatorname{Log}[x], \{x, 1\}\right]$$

Out $[3] = \{x \to 1.44726\}$.

9. Sketching 2-D Graphs

Example 1: Draw graph of $y = \sin x$ when $0 \le x \le \pi$.

Solution: Type Plot[$\cos[x], \{x, 0, \pi\}$]

Press the [SE] keys. You will get:

In [3]:= Plot[$\cos[x], \{x, 0, \pi\}$]

Out [3]= You find the graph of $\cos x$ when $0 \le x \le \pi$.

Example 2: Draw graph of $f(x) = \begin{cases} x^3 - 1, & x \ge 0 \\ x^2, & x < 0. \end{cases}$

when $-4 \le x \le 5$.

Solution: Type

$$f[x] := x^3 - 1/; x \ge 0$$

$$f[x] := x^2/; x < 0.$$

Press the [SE] keys. You will get:

In [3]:=
$$f[x_]:= x^3 - 1 /; x \ge 0$$

 $f[x_]:= x^2 /; x < 0$.