KING FAHD UNIVERSITY OF PETROLEUM \& MINERALS DEPARTMENT OF MATHEMATICAL SCIENCES DHAHRAN, SAUDI ARABIA

STAT 212: BUSINESS STATISTICS II

Semester 043
Final Exam
Wednesday August 24, 2005
12:30 pm - 2:30 pm
Please circle your instructor's name:
Marwan Al-Momani
Raid Anabosi

Name:
ID\#:
Section:
Serial:

Question No	Full Marks	Marks Obtained
1	7	
2	10	
3	22	
4	7	
5	7	
6	7	
7	$\mathbf{8 0}$	
Total		

Q1.The following table presents data on the number of moving traffic offenses during the past five years for various age groups

Age	Number of Traffic Offenses		Total	
	0	1 to 2		
$16-25$	6	22	32	60
$26-50$	12	17	10	39
$51-75$	4	16	11	31
Total	22	55	53	130

Based on these data, can we conclude that the number of traffic offenses is independent of the age? Use $\alpha=.05$

The hypothesis are	$\mathrm{H}_{0}:$
The test statistic Value	
The critical Value:	
Decision Rule	
Conclusion	

Q2.A marketing research study performed by the marketing division of a certain company surveyed the income levels and expenditures of recreation for a sample of 20 people. Measurements recorded the expenditures on recreation during the previous year, Y (In 100,000 S.R), and the total family income, X (In 100,000 S.R).

X	21.3	30.2	31.5	45.9	34.6	17.8	53.6	17.4	26.8	15.7
Y	1.425	1.675	1.356	4.53	3.2	1.06	4.09	1.2	1.8	0.7
X	17.6	16.89	28	14.3	9.8	24.7	20.5	31.7	47.8	8.4
Y	0.9	1	2.45	0.65	0.3	1.5	0.89	2.3	3.1	0.1

$$
\sum x=514.49, \sum x^{2}=16189.432, \sum x y=1151.2905
$$

Given that: $\sum y=34.226, \sum y^{2}=86.734686$
a. $\quad r=$

Interpretation of $r=$	
b. Calculate the least square estimates b_{0} and b_{1}	$b_{1}=$ $b_{0}=$
c. Is it possible to calculate R^{2} ? If yes find it and interpret its value	$R^{2}=$ Interpretation of R^{2} :
d. Compute a 95% confidence interval for the average value of Y given $x_{p}=28$	

Q3. The following Minitab output is the result of a multiple regression analysis in which we are interested in explaining the variation in retail price (\mathbf{Y}) of personal computers based on four independent variables, monitor included ($1=$ Yes, $0=$ No) (X1), CPU Speed in Mhz (X2), RAM in MB's (X3), and Hard drive capacity in GB's (X4).

Regression Analysis: Y versus X1; X2; X3; X4; X2X4

The regression equation is						
$Y=1404+49 \mathrm{X} 1-3.37 \mathrm{X} 2+4.72 \mathrm{X} 3-105 \mathrm{X} 4+0.644 \mathrm{X} 2 \mathrm{X} 4$						
Predictor	Coef		Coef	T	P	VIF
Constant	1404		1765	0.80	0.433	
X1	48.7		240.5	0.20	0.841	1.0
X2	-3.372		4.689	-0.72	0.478	8.3
X3	4.721		3.005	1.57	0.127	2.2
X4	-104.9		304.6	-0.34	0.733	133.3
X2X4	0.6442		0.6967	0.92	0.363	176.2
$S=697.0$	$R-S q=70.5 \% \quad R-S q(a d j)=65.5 \%$					

Analysis of Variance

R denotes an observation with a large standardized residual
Durbin-Watson statistic $=2.07$
Predicted Values for New Observations

New Obs	Fit	SE Fit		95.0\% CI			95.0\% PI	
1	1170	259	(640;	1700)	(-349;	2689)
Values	Predic	for N	Ob	vation				

New Obs	X1	X2	X3	X4	X2X4
1	1.00	400	64.0	5.00	2000

Best Subsets Regression: Y versus X1; X2; X2X4

Response is Y

		R-Sq(adj)	C-p	S	$x$$\times 2$$\times \quad \times$	
Vars	R-Sq					24
1	67.7	66.8	0.3	684.26		x
1	42.8	41.2	25.2	910.58		x
2	68.0	66.0	2.0	691.92		X X
2	67.8	65.8	2.2	693.89	X	x
3	68.0	65.0	4.0	702.25		X X

Correlations: Y; X1; X2; X3; X4

	Y	X1	X2	X3
X1	0.072			
	0.678			
X2	0.655	-0.020		
	0.000	0.910		
X3				
	0.691	0.045	0.658	
	0.000	0.795	0.000	
X4				
	0.819	0.083	0.761	0.708
	0.000	0.632	0.000	0.000

Cell Contents: Pearson correlation P-Value

Residual Model Diagnostics

Given this output and your knowledge of multiple regression, answer the following;

a. The slope of the Speed variable is	
b. Is the relationship between RAM and Hard drive significant? Why?	$\mathrm{H}_{0}:$
	$\mathrm{H}_{\mathrm{A}}:$
	Decision:

Q4. The U.S. Golf Association undertook a study of two brands of golf balls with the objective to see whether there is a consistency in the distance (in feet) that the two golf ball brands will fly off the tee. To conduct the test, the U.S.G.A. uses a robot named "Iron Byron," which swings the club at the same speed and with the same swing pattern each time it is used. The following data reflect sample data for a random sample of balls of each brand.

Brand A	234	236	230	227	234	233	228	229	230	238	2319	537895
Brand B	240	236	241	236	239	243	230	239	243	240	2387	569913

Using 2.5% sig. level, do you think that the variation in brand A is not greater than that in brand B?

Hypotheses:	$\mathrm{H}_{0}:$ Check the assumptions: Test statistic $=$ Critical value $=$ Decision rule: Conclusion:
	2.
Decision:	

Q5. A maker of toothpaste is interested in testing whether the proportion of adults (over age 18) who use their toothpaste and have no cavities within a six-month period is any different than the proportion of children (18 and under) who use the toothpaste and have no cavities within a six-month period. To test this, they have selected a sample of adults and a sample of children randomly from the population of those customers who use their toothpaste. The following results were observed.

	Adults	Children
Sample Size	$\mathbf{1 0 0}$	$\mathbf{2 0 0}$
Number with 0 cavities	$\mathbf{8 3}$	$\mathbf{1 6 5}$

Using the p-value approach and a significance level of 0.05 , do you think that adults are different than children?

Hypotheses:	$\mathrm{H}:$
Check the assumptions:	1.
Test statistic $=$	2.
P-value $=$	3.
Conclusion:	
Decision rule:	
Decision:	

Q6. Referring to question (2) above, if the manufacturer of brand A balls thinks that he average flying distance for the balls is approximately 235 feet. Do the data provide sufficient evidence to support the claim of the manufacturer? Use 2% significance level.

Hypotheses:	$\begin{aligned} & \mathrm{H}_{\mathrm{o}}: \\ & \mathrm{H}_{\mathrm{A}} \end{aligned}$
Check the assumptions:	1. 2. 3.
Test statistic $=$	
Critical value $=$	
Decision rule:	
Decision:	
Conclusion:	

Q7.

a. The following table represents the total sales of a big company (In millions of S.R.)

Years	1997	1998	1999	2000
Sales	1.5	2.01	2.25	2.35

Use the year 1997 as the base year to find the simple index value for the year 1999, and interpret its value

$I_{1999}=$	Interpretation:

b. The following table represents the expenses of a big university for three years (In millions of S.R.)

Year	Salaries	Lab Materials	Housing Maintenance	
1999	2	0.15	0.5	0.75
2000	2.1	0.16	0.45	0.6
2001	2.3	0.2	0.55	0.8

Calculate an unweighted aggregate price index for the year 2001 using 1999 as the base year, and interpret its value.

$I_{2001}=$	Interpretation:

c. The following values represent advertising rates paid by a regional catalog retailer that advertises either on TV or in newspaper (In S.R.)

Year	TV Ad.	$\%$ on TV Ad.	Newspapers Ad.
1	1050	30	1400
2	1085	35	1470
3	1115	35	1610
4	1330	45	2240

I. Find the Paashe index for the year 3 using year 1 as a base year, and interpret its value

$I_{3}=$	Interpretation:

II. Find the Laspeyres index for the year 4 using year 1 as a base year, and interpret its value

$I_{4}=$	Interpretation:

d. Al-Riyadh bank has two major branches, one in Jeddah, and the other in Al-Riyadh. The manger of the bank wants to evaluate the number of new clients in each quarter, the bank considered four years $1999-2002$. The seasonal index for each quarter is given below

Quarter	1	2	3	4
Seasonal Index	1.0323	0.9236	1.0823	0.9745

I. Normalize the seasonal index values

Quarter	1	2	3	4
Normal Seasonal Index values				

II. Suppose that the seasonally unadjusted forecast for the $3^{\text {rd }}$ quarter of 2002 is 263.6149 , find the adjusted forecasted value for the $3^{\text {rd }}$ quarter of 2002.

> Adjusted forecasted value =
III. Find the desesonalized value of $y_{t}=190$ if it was in the $2^{\text {nd }}$ quarter of the year 1999.

Desesonalized value $=$
e. The following data represents the total sales for a certain market for the previous four years (In 100,000 S.R.)

Year	Sales	Forecasted value \boldsymbol{F}_{t}
2001	780	780
2002	815	780
2003	795	787
2004	820	788.6

I. Using the values in the above table, find the single exponential smoothing forecast value for the year 2005 using $\alpha=0.20$

The forecasted value for the year $2005=$
II. Using $\alpha=0.20$ and $\beta=0.25$, find the double exponential smoothing forecast value for the year 2002, given that the fitted line equation for the sales is $y_{t}=777.50+10 t, y_{1}=780$

$\mathrm{C}_{0}=$	$\mathrm{T}_{0}=$
$\mathrm{C}_{1}=$	$\mathrm{T}_{1}=$
$\mathrm{F}_{2}=$	

III. If MAD for the single and double exponential smoothing methods are $16.445,11.246$ respectively, which method is better? Why?

Answer:
 Reason:
 With Our Best Wishes

