KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
 MATHEMATICAL SCIENCES DEPARTMENT
 MATH 201
 EXAM \# 1
 SUNDAY Oct 6, 2002
 SEC\#: ID\#:

NAME:

SHOW ALL YOUR WORK

1. (4pts each)
a. Let $\mathbf{u}=\langle\alpha, 1+\alpha\rangle, \mathbf{v}=\langle 4,-2\rangle, \mathbf{w}=\langle 3,1\rangle$. Find all possible values of α if $\|\mathbf{u}\|(\mathbf{v} \cdot \mathbf{w})=10$
b. Let $\mathbf{v}=\langle 3,1,-2\rangle, \mathbf{b}=2 \mathbf{i}-\mathbf{k}$. Express \mathbf{v} as the sum of a vector parallel to \mathbf{b} and a vector orthogonal to \mathbf{b}.
c. Give all angles of the triangle $A(-1,2,3), B(2,-2,0), C(3,1,4)$
2. (5pts each)
a. Find the equation of the sphere with center in the middle of the line segment $A(-1,2,3)$, $B(3,-2,-1)$ and which touches the x-axis
b. Find the center and radius of the sphere $x^{2}+y^{2}+z^{2}-2 x-4 y+1=0$. Hence find the distance between the point $A(-1,2,3)$ and the sphere.
3. (6pts each)
a. Find the equation of the tangent line to the polar curve $r=2 \cos \theta$ at $\theta=\frac{\pi}{3}$. Give your equation in polar form.
b. Calculate the length of the entire cardioid $r=a(1+\cos \theta)$.
4. (6pts) Set up an integral to calculate the area inside the cardioid $r=a(1+\cos \theta)$ and outside the circle $r=3 a \cos \theta$. Do not carry out the integration.
