KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS MATHEMATICAL SCIENCES DEPARTMENT MATH 201 EXAM # 1 SUNDAY Oct 6, 2002 SEC#: ID#:

SHOW ALL YOUR WORK

1. (4pts each)

NAME:

- **a.** Let $\mathbf{u} = \langle \alpha, 1 + \alpha \rangle$, $\mathbf{v} = \langle 4, -2 \rangle$, $\mathbf{w} = \langle 3, 1 \rangle$. Find all possible values of α if $\|\mathbf{u}\| (\mathbf{v} \cdot \mathbf{w}) = 10$
- **b.** Let $\mathbf{v} = \langle 3, 1, -2 \rangle$, $\mathbf{b} = 2\mathbf{i} \mathbf{k}$. Express \mathbf{v} as the sum of a vector parallel to \mathbf{b} and a vector orthogonal to \mathbf{b} .
- **c.** Give all angles of the triangle A(-1,2,3), B(2,-2,0), C(3,1,4)

2. (5pts each)

- **a.** Find the equation of the sphere with center in the middle of the line segment A(-1,2,3), B(3,-2,-1) and which touches the *x*-axis
- **b.** Find the center and radius of the sphere $x^2 + y^2 + z^2 2x 4y + 1 = 0$. Hence find the distance between the point A(-1, 2, 3) and the sphere.

3. (6pts each)

- **a.** Find the equation of the tangent line to the polar curve $r = 2\cos\theta$ at $\theta = \frac{\pi}{3}$. Give your equation in polar form.
- **b.** Calculate the length of the entire cardioid $r = a(1 + \cos \theta)$.

4. (6pts) Set up an integral to calculate the area inside the cardioid $r = a(1 + \cos \theta)$ and outside the circle $r = 3a\cos\theta$. Do not carry out the integration.