KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
 DEPARTMENT OF MATHEMATICS \& STATISTICS
 MATH 201-05
 Quiz \# 2

1. Find equations of the tangent and normal lines to the graph of the polar curve $r=\sin 2 \theta$ at $\theta=\pi / 4$.

Solution
At $\theta=\pi / 4, r=\sin (\pi / 2)=1, x=1 / \sqrt{2}, y=1 / \sqrt{2}, \frac{d r}{d \theta}=2 \cos (\pi / 2)=0$.

$$
\left.\frac{d y}{d x}\right|_{\theta=\pi / 4}=\left.\frac{\frac{d r}{d \theta} \sin \theta+r \cos \theta}{\frac{d r}{d \theta} \cos \theta-r \sin \theta}\right|_{\theta=\pi / 4}=-1
$$

Slope of the normal $=1$.
Equation of the tangent

$$
y-1 / \sqrt{2}=-(x-1 / \sqrt{2}) .
$$

Equation of the normal

$$
y-1 / \sqrt{2}=x-1 / \sqrt{2}
$$

2. Find the area inside the curve $r=1+\cos \theta$ and outside the curve $r=\cos \theta$.

Solution
The graphs of the curves are shown below.

The required area is

$$
\begin{aligned}
A & =\int_{0}^{2 \pi} \frac{1}{2}(1+\cos \theta)^{2} d \theta-\int_{0}^{\pi} \frac{1}{2}(\cos \theta)^{2} d \theta \\
& =\frac{3}{2} \pi-\frac{1}{4} \pi=\frac{5}{4} \pi .
\end{aligned}
$$

3. The distance from the point $P(x, y, z)$ and the piont $A(1,-2,0)$ is twice the distance between P and the point $B(0,1,1)$. Show that the set of all such points is a sphere and find its center and radius.
Solution
The given relation between the distances gives the equation

$$
(x-1)^{2}+(y+2)^{2}+z^{2}=4\left[x^{2}+(y-1)^{2}+(z-1)^{2}\right]
$$

Which simplifies to

$$
x^{2}+y^{2}+z^{2}+\frac{2}{3} x-4 y-\frac{8}{3} z=-1 .
$$

Completing the squares, we get

$$
\begin{aligned}
\left(x+\frac{1}{3}\right)^{2}+(y-2)^{2}+\left(z-\frac{4}{3}\right)^{2} & =-1+\frac{1}{9}+4+\frac{16}{9} \\
& =\frac{44}{9}
\end{aligned}
$$

Thus, the center of the sphere is $\left(-\frac{1}{3}, 2, \frac{4}{3}\right)$ and the radius is $\frac{2}{3} \sqrt{11}$.

