KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
 DEPARTMENT OF MATHEMATICS \& STATISTICS
 MATH 201-04
 Quiz \# 1

1. Which points on $x=3 t-t^{2}, y=t^{3}-12$ have tangents with slope 3 ?

Answer:

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{3 t^{2}}{3-2 t}=3 \Longrightarrow t^{2}+2 t-3=0 \\
& \Longrightarrow t=-3, t=1
\end{aligned}
$$

Inserting the values of t in the equations for x, y we get the two points $(-18,-39)$ and $(2,-11)$.
2. Find $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ at the point $(1,3)$ on the curve $x=e^{t}, y=3 \cos t$.

Answer:

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{-3 \sin t}{e^{t}} \\
\frac{d^{2} y}{d x^{2}} & =\frac{\frac{d}{d t} \frac{d y}{d x}}{\frac{d x}{d t}}=\frac{e^{t}(-3 \sin t)+e^{t} 3 \sin t}{e^{3 t}} \\
& =\frac{-3 \cos t+3 \sin t}{e^{2 t}}
\end{aligned}
$$

At the point $(1,3), t=0$ Therefore $\frac{d y}{d x}=0$ and $\frac{d^{2} y}{d x^{2}}=-3$.
3. Eleminate t and sketch the resulting curve for $x=2 \sin t, y=\cos t,-\frac{\pi}{2}<t<\frac{\pi}{2}$. Indicate with an arrow the direction in which the curve is traced as t increases.

Answer:
Eleminating t results in the equation

$$
\frac{x^{2}}{4}+y^{2}=1
$$

For the given range of t, we only have the upper half of the ellipse.

The curve is traced clockwise from $x=-2$ to $x=2$.

