Exam \# 2

1. (a) (4 points) Find the equation of the tangent plane and the parametric equations of the normal line to the surface $x y+\ln (y / z)=8$ at the point $(4,2,2)$.
(b) (4 points) Calculate $\frac{\partial x}{\partial w}$ and $\frac{\partial z}{\partial w}$ for $x e^{w}+w e^{z}=z e^{x}$.

Solution:

$$
\begin{aligned}
\nabla f & =\left\langle y, x+\frac{1}{y},-\frac{1}{z}\right\rangle . \\
\nabla f(4,2,2) & =\left\langle 2, \frac{9}{2},-\frac{1}{2}\right\rangle .
\end{aligned}
$$

Equation of the tangent plane:

$$
2(x-4)+\frac{9}{2}(y-2)-\frac{1}{2}(z-2)=0 .
$$

Equations of the normal line

$$
x=4+2 t, y=2+\frac{9}{2} t, z=2-\frac{1}{2} t
$$

(b):

$$
\begin{aligned}
F(x, w, z) & =x e^{w}+w e^{z}-z e^{x} \\
x_{w} & =-\frac{F_{w}}{F_{x}}=-\frac{x e^{w}+e^{z}}{e^{w}-z e^{x}} . \\
z_{w} & =-\frac{F_{w}}{F_{z}}=-\frac{x e^{w}+e^{z}}{w e^{z}-e^{x}} .
\end{aligned}
$$

2. (a) (4 points) A right circular cone had radius 120 in . and hight 140 in. if the error in measuring the radius is 1.8 in and the error in measuring the hight is -2.5 in . use differentials to estimate the error in calculating the volume of the cone. (The volume of a right circular cone is $V=\frac{\pi}{3} r^{2} h$.)
(b) (3 points) Find all points on the line $x=1+t, y=2-3 t, z=4+2 t$ that are at the same distance from the two planes $x-2 y+3 z=1,2 x+3 y+z=2$.
Solution: (a)

$$
\begin{aligned}
d V & =V_{r} d r+V_{h} d h \\
& =\frac{2 \pi}{3} r h d r+\frac{\pi}{3} r^{2} d h \\
& =\frac{\pi}{3}(2 * 120 * 140 * 1.8-120 * 120 * 2.5) \\
& =8160 \pi \mathrm{in}^{3} .
\end{aligned}
$$

(b) Distance from first plane:

$$
\frac{|(1+t)-2(2-3 t)+3(4+2 t)-1|}{\sqrt{14}}=\frac{|13 t+8|}{\sqrt{14}}
$$

Distance form second plane:

$$
\frac{|2(1+t)+3(2-3 t)+(4+2 t)-2|}{\sqrt{14}}=\frac{|10-5 t|}{\sqrt{14}}
$$

Equality of the two distances means

$$
\begin{aligned}
13 t+8 & = \pm(10-5 t) \\
t & =\frac{1}{9}, t=-\frac{9}{4}
\end{aligned}
$$

The points are

$$
P_{1}=\left(\frac{10}{9}, \frac{5}{3}, \frac{38}{9}\right), P_{2}=\left(-\frac{5}{4}, \frac{35}{4},-\frac{1}{9}\right) .
$$

3. (a) $\mathbf{3}$ points) Find the minimum rate of change of the function $f(x, y, z)=x y \sin (x z)$ at the point $\left(1,-1, \frac{\pi}{3}\right)$ and the direction in which it occures.
(b) (4 points) Find all directions \mathbf{u} in which the function $f(x, y)=x^{2}+2 y$ has slope 1 at the point $(1,0)$.
Solution: (a):

$$
\begin{aligned}
\nabla f & =\left\langle y \sin x z+x y \cos x z, x \sin x z, x^{2} y \cos x z\right\rangle \\
\nabla f\left(1,-1, \frac{\pi}{3}\right) & =\left\langle-\frac{\sqrt{3}}{2}-\frac{\pi}{6}, \frac{\sqrt{3}}{2},-\frac{1}{2}\right\rangle \\
& =\langle-1.3896,0.86603,-0.5\rangle
\end{aligned}
$$

Minimum rate of change $=-\left\|\nabla f\left(1,-1, \frac{\pi}{3}\right)\right\|=\sqrt{(-1.3896)^{2}+(0.86603)^{2}+(-0.5)^{2}}=$ 1.712 and it occures in the direction

$$
\begin{aligned}
\mathbf{u} & =-\frac{\nabla f\left(1,-1, \frac{\pi}{3}\right)}{\left\|\nabla f\left(1,-1, \frac{\pi}{3}\right)\right\|}=\left\langle\frac{-1.3896}{1.712}, \frac{0.86603}{1.712}, \frac{-0.5}{1.712}\right\rangle \\
& =\langle-0.81168,0.50586,-0.29206\rangle
\end{aligned}
$$

(b):

$$
\begin{aligned}
\nabla f & =\langle 2 x, 2\rangle \\
\nabla f(1,0) & =\langle 2,2\rangle .
\end{aligned}
$$

If we write the unit vector $\mathbf{u}=\left\langle u_{1}, u_{2}\right\rangle$ then $u_{1}^{2}+u_{2}^{2}=1$ and

$$
\begin{aligned}
D_{u} f & =2 u_{1}+2 u_{2}=1 \\
u_{1}+u_{2} & =\frac{1}{2}, u_{1}^{2}+u_{2}^{2}=1 \\
u_{1} & =\frac{1}{2}-u_{2} \\
\left(\frac{1}{2}-u_{2}\right)^{2}+u_{2}^{2} & =1 .
\end{aligned}
$$

Solving the last equation using the quadratic formula we obtain

$$
u_{2}=\frac{1 \pm \sqrt{7}}{4}, u_{1}=\frac{1 \mp \sqrt{7}}{4} .
$$

Therefore,

$$
\mathbf{u}=\left\langle\frac{1+\sqrt{7}}{4}, \frac{1-\sqrt{7}}{4}\right\rangle, \text { or } \mathbf{u}=\left\langle\frac{1-\sqrt{7}}{4}, \frac{1+\sqrt{7}}{4}\right\rangle .
$$

4. (a) (4 points) Find the equation of the plane that passes through the three points $(1,0,0),(0,2,-2),(-5,2,1)$.
(b) (4 points) Identify and sketch the surface .

Solution: (a): We use the three points to form two vectors

$$
\mathbf{u}_{1}=\langle-1,2,-2\rangle, \mathbf{u}_{2}=\langle-6,2,1\rangle
$$

The normal to the plane is

$$
\mathbf{n}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
-1 & 2 & -2 \\
-6 & 2 & 1
\end{array}\right|=6 \mathbf{i}+13 \mathbf{j}+10 \mathbf{k} .
$$

Equation of the plane is

$$
6(x-1)+13 y+10 z=0 .
$$

(b): The surface is an elliptic paraboloid with axis along the z-axis.

