1. Find all points on the polar curve $r=1+\cos \theta$ where the tangeng line is (a) horizontal and (b) vertical.
Solution:

$$
\begin{aligned}
\frac{d x}{d \theta} & =-(1+\cos \theta) \sin \theta-\sin \theta \cos \theta \\
& =-\sin \theta-2 \sin \theta \cos \theta \\
& =-\sin \theta(1+2 \cos \theta) \\
\frac{d y}{d \theta} & =(1+\cos \theta) \cos \theta-\sin ^{2} \theta \\
& =2 \cos ^{2} \theta+\cos \theta-1 \\
& =(2 \cos \theta-1)(\cos \theta+1)
\end{aligned}
$$

For horizontal tangent,

$$
\begin{aligned}
\frac{d y}{d \theta} & =0, \frac{d x}{d \theta} \neq 0 \\
\cos \theta & =\frac{1}{2}, \cos \theta=-1 \\
\theta & =\frac{\pi}{3}, \frac{5 \pi}{3}, \pi
\end{aligned}
$$

The third anser is rejected since it makes $\frac{d x}{d \theta}=0$. Points of horizontal tangents are $\left(\frac{1}{2}, \frac{\pi}{3}\right),\left(\frac{1}{2}, \frac{5 \pi}{3}\right)$.
For vertical tangents

$$
\begin{aligned}
\frac{d x}{d \theta} & =0, \frac{d y}{d \theta} \neq 0 \\
\sin \theta & =0, \cos \theta=-\frac{1}{2} \\
\theta & =0, \pi, \frac{2 \pi}{3}, \frac{4 \pi}{3}
\end{aligned}
$$

The second answer is rejected since it makes $\frac{d y}{d \theta}=0$. Points of vertical tangents are $(2,0),\left(\frac{1}{2}, \frac{2 \pi}{3}\right),\left(\frac{1}{2}, \frac{4 \pi}{3}\right)$.
2. Find the length of the polar curve $r=e^{2 \theta}, 0 \leq \theta \leq 2 \pi$

Solution:

$$
\begin{aligned}
L & =\int_{0}^{2 \pi} \sqrt{\left(e^{2 \theta}\right)^{2}+\left(2 e^{2 \theta}\right)^{2}} d \theta \\
& =\int_{0}^{2 \pi} \sqrt{e^{4 \theta}+4 e^{4 \theta}} d \theta \\
& =\int_{0}^{2 \pi} \sqrt{5 e^{4 \theta}} d \theta \\
& =\sqrt{5} \int_{0}^{2 \pi} e^{2 \theta} d \theta \\
& =\frac{\sqrt{5}}{2}\left(e^{2 \theta}\right)_{0}^{2 \pi} \\
& =\frac{\sqrt{5}}{2}\left(e^{4 \pi}-1\right) .
\end{aligned}
$$

3. Find x such that the points $P(x, 0,1), Q(2,4,6), R(3,-1,2)$ and $S(6,2,8)$ lie in the same plane.
Solution:

$$
\overrightarrow{P Q}=\langle 2-x, 4,5\rangle, \overrightarrow{P R}=\langle 3-x,-1,1\rangle, \overrightarrow{P S}=\langle 6-x, 2,7\rangle
$$

For $\overrightarrow{P Q}, \overrightarrow{P R}, \overrightarrow{P S}$ to be coplanar, we must have $\overrightarrow{P Q} \cdot(\overrightarrow{P R} \times \overrightarrow{P S})=0$ or

$$
\begin{aligned}
\left|\begin{array}{ccc}
2-x & 4 & 5 \\
3-x & -1 & 1 \\
6-x & 2 & 7
\end{array}\right| & =0 \\
18 x-18 & =0 \\
x & =1
\end{aligned}
$$

4. (a) Find the center and radius of the sphere $x^{2}+y^{2}+z^{2}=4 x-2 y$.

Solution:

$$
\begin{aligned}
\left(x^{2}-4 x+4\right)+\left(y^{2}+2 y+1\right)+z^{2} & =4+1 \\
(x-2)^{2}+(y+1)^{2}+z^{2} & =5 .
\end{aligned}
$$

Center $(2,-1,0)$, radius $\sqrt{5}$.
(b) Find an equation of the largest sphere with center at $(6,2,3)$ that is contained in the first octant.
Solution:
The center is closest to the $x z$-plane. The largest sphere must have radius 2 . The equation of that sphere is

$$
(x-6)^{2}+(y-2)^{2}+(z-3)^{2}=4
$$

5. (a) Find $|\mathbf{a}|, \mathbf{a}+\mathbf{b}, \mathbf{a}-\mathbf{b}$ and $3 \mathbf{a}+4 \mathbf{b}$ for $\mathbf{a}=\langle-3,-4,-1\rangle, \mathbf{b}=\langle-1,5,-2\rangle$. Solution:

$$
\begin{aligned}
|\mathbf{a}| & =|\langle-3,-4,-1\rangle|=\sqrt{9+16+1}=\sqrt{26} . \\
\mathbf{a}+\mathbf{b} & =\langle-3,-4,-1\rangle+\langle-1,5,-2\rangle=\langle-4,1,-3\rangle \\
\mathbf{a}-\mathbf{b} & =\langle-3,-4,-1\rangle-\langle-1,5,-2\rangle=\langle-2,-9,1\rangle \\
3 \mathbf{a}+4 \mathbf{b} & =3\langle-3,-4,-1\rangle+4\langle-1,5,-2\rangle=\langle-13,8,-11\rangle .
\end{aligned}
$$

(b) Find a vector that has the same direction as $\langle-2,4,2\rangle$ but has lenght 6 Solution:

$$
\begin{aligned}
\mathbf{v} & =6 \frac{\langle-2,4,2\rangle}{|\langle-2,4,2\rangle|}=\frac{6}{\sqrt{24}}\langle-2,4,2\rangle \\
& =\sqrt{6}\langle-1,2,1\rangle .
\end{aligned}
$$

6. Find the scalar and vector projections of the vector $\mathbf{v}=2 \mathbf{i}-3 \mathbf{j}+\mathbf{k}$ onto the vector $\mathbf{w}=\mathbf{i}-2 \mathbf{j}$.
Solution:

$$
\begin{aligned}
\operatorname{Comp}_{\mathbf{w}} \mathbf{v} & =\frac{\mathbf{w} \cdot \mathbf{v}}{|\mathbf{w}|}=\frac{8}{\sqrt{5}} \\
\operatorname{Proj}_{\mathbf{w}} \mathbf{v} & =\operatorname{Comp}_{\mathbf{w}} \mathbf{v} \frac{\mathbf{w}}{|\mathbf{w}|}=\frac{8}{5}(\mathbf{i}-2 \mathbf{j}) \\
& =\left(\frac{8}{5} \mathbf{i}-\frac{16}{5} 2 \mathbf{j}\right)
\end{aligned}
$$

