ING FAHD UNIVERSITY OF PETROLEUM AND MINERALS

DEPARTMENT OF MATHEMATICAL SCIENCES
MATH 201-06
Quiz \# 3
April 07, 2008

1. (a) Find symmetric equations for the line of intersection of the two planes $\Pi_{1}: x-$ $2 y+z=8$ and $\Pi_{2}: 2 x+y+z=8$
Solution:
Rewrite the two equations as

$$
2 y-x=z-8,-2 x-y=z-8
$$

Solve the above system for x and y to get

$$
x=-3 y, y=\frac{z-8}{5} .
$$

Thus, the symmetric equations can be written as

$$
\frac{x}{-3}=y=\frac{z-8}{5} .
$$

(b) Find the angle between the two planes Π_{1} and Π_{2} of Part a.

Solution:

$$
\begin{aligned}
& N_{1}=\langle 1,-2,1\rangle, N_{2}=\langle 2,1,1\rangle \\
& \cos \theta=\frac{N_{1} \cdot N_{2}}{\left|N_{1}\right|\left|N_{2}\right|}=\frac{1}{6} . \\
& \theta=\cos ^{-1} \frac{1}{6} .
\end{aligned}
$$

(c) Identify and sketch the surface $x-y^{2}-z^{2}=1$.

Solution:

$$
x=1+y^{2}+z^{2}
$$

The surface is a paraboloid with axis along the x-axis and vertex at $(1,0,0)$

2. Identify the surface whose equation is given by $z=r^{2}$.

Solution:
Changing to rectangular coordinates we get

$$
z=x^{2}+y^{2}
$$

so the surface is a circular paraboloid with axis along the z-axis and vertex at $(0,0,0)$.

