SHOW ALL YOUR WORK

1. Find points on the curve $x=10-t^{2}, y=t^{3}-12$ where the tangent is horizontal or vertical.

Solution:

$$
\dot{x}=-2 t, \dot{y}=3 t^{2} .
$$

At vertical tangents, $\dot{x}=0$ and $\dot{y} \neq 0$. The first conditions gives $t=0$, but $\dot{y}=0$ at $t=0$. Therefore there are no vertical tangents.
At horizontal tangents $\dot{y}=0$ and $\dot{x} \neq 0$. The first conditions gives $t=0$, but $\dot{x}=0$ at $t=0$. Therefore there are no horizontal tangents.
The graph of the figure shows also that it does not have any vertical or horizontal tangents.

2. Find $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ for the parametric curve $x=2 \sin t, y=3 \cos t$.

Solution:

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{\dot{y}}{\dot{x}}=-\frac{3 \sin t}{2 \cos t}=-\frac{3}{2} \tan t . \\
\frac{d^{2} y}{d x^{2}} & =\frac{\dot{x} \ddot{y}-\dot{y} \ddot{x}}{\dot{x}^{3}}=\frac{-6 \cos ^{2} t-6 \sin ^{2} t}{8 \cos ^{3} t}=-\frac{3}{4} \sec ^{3} t
\end{aligned}
$$

3. Eleminate t and sketch the resulting curve $x=\sec t, y=\tan t,-\frac{\pi}{2}<t<\frac{\pi}{2}$. Indicate with an arrow the direction in which the curve is traced as t increases.

Solution:

$$
x^{2}-y^{2}=\sec ^{2} t-\tan ^{2} t=1
$$

The graph is shown below. It is traced from bottom to top as t increases.

