KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS DEPARTMENT OF MATHEMATICAL SCIENCES
 MATH 201-11
 Quiz \# 5

1. Use Lagrange multipliers to find the maximum and minimum of the function $f(x, y)=$ $x^{2} y$ subject to the constraint $x^{2}+y^{2}=1$.

Solution

Applying the Lagrange Multiplier mathod we get the system of equations

$$
\begin{aligned}
x & =\lambda x y, \\
x^{2} & =2 \lambda y, \\
x^{2}+y^{2} & =1 .
\end{aligned}
$$

The first equation gives $x=0$ or $y=\lambda$.
If $x=0$, the third equation gives $y= \pm 1$ and therefore, we have the two critical pionts $(0, \pm 1)$.

If $y=\lambda$ the second equation becomes $x^{2}=2 y^{2}$. This together with the thrid equation give $3 y^{2}=1$. Then $y= \pm \frac{1}{\sqrt{3}}$, from which we get $x= \pm \sqrt{\frac{2}{3}}$. Therefore, we have the four critical points $\left(\pm \sqrt{\frac{2}{3}}, \pm \frac{1}{\sqrt{3}}\right)$. To find the max and min of f we substitute the critical points in the expression of f.

$$
\begin{aligned}
f(0, \pm 1) & =0 \\
f\left(\pm \sqrt{\frac{2}{3}}, \frac{1}{\sqrt{3}}\right) & =\frac{2}{3 \sqrt{3}} \\
f\left(\pm \sqrt{\frac{2}{3}},-\frac{1}{\sqrt{3}}\right) & =-\frac{2}{3 \sqrt{3}}
\end{aligned}
$$

Therefore, $f_{\max }=\frac{2}{3 \sqrt{3}}$, occuring at the points $\left(\pm \sqrt{\frac{2}{3}}, \frac{1}{\sqrt{3}}\right)$ and $f_{\min }=-\frac{2}{3 \sqrt{3}}$ occuring at the points $\left(\pm \sqrt{\frac{2}{3}},-\frac{1}{\sqrt{3}}\right)$.

