1. (a) Find the parametic equations of the straight line L through the point $P(1,-2,2)$ that is perpindicular to the plane $\Pi: x-2 y+z=8 . D$
Solution:
Direction of the line L is $\langle 1,-2,1\rangle$ (the same as the normal to the plane Π).
Equations of L are:

$$
\begin{aligned}
x & =1+t \\
y & =-2-2 t \\
z & =2+t
\end{aligned}
$$

(b) Where dose the line L intersect the plane Π ?

Solution:
Pet $x=1+t, y=-2-2 t, z=2+t$ in the equation of Π. This gives

$$
(1+t)-2(-2-2 t)+(2+t)=8
$$

Solve for t to get $t=\frac{1}{6}$. Calculate x, y, z corresponding to $t=\frac{1}{6}$ to obtain the point of intersection

$$
\left(\frac{7}{6},-\frac{7}{3}, \frac{13}{6}\right) .
$$

(c) Find the distance between the point P and the plane Π in two different ways. Solution:
Using the distance formula,

$$
d=\frac{|1+4+2-8|}{\sqrt{1+4+1}}=\frac{1}{\sqrt{6}} .
$$

The distance is also the distance between the two points $(1,-2,2)$ and $\left(\frac{7}{6},-\frac{7}{3}, \frac{13}{6}\right)$. Therefore,

$$
d=\sqrt{\left(1-\frac{7}{6}\right)^{2}+\left(-2+\frac{7}{3}\right)^{2}+\left(2-\frac{13}{6}\right)^{2}}=\frac{1}{\sqrt{6}}
$$

2. Describe and sketch the surface $z=\cos x$.

Solution:
The surface is a cylinder with directrix along the Y-axis. The graph is showm below.

