1. (a) Is the function

$$
f(x, y)=\left\{\begin{array}{cl}
\frac{x y}{x^{2}+x y+y^{2}} & (x, y) \neq(0,0) \\
\frac{1}{3} & (x, y)=(0,0)
\end{array}\right.
$$

continuous at $(0,0)$? Why?
Solution:
Approach $(0,0)$ through $x=0$ to get $\lim _{y \rightarrow 0} f(0, y)=0$.
Approach $(0,0)$ through $x=y$ to get $\lim _{y \rightarrow 0} f(y, y)=\frac{1}{3}$.
Since $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$ does not exit, f is not continuous at $(0,0)$.
(b) Calculate $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{3}+y^{3}}{x^{2}+y^{2}}$.

Solution:
Using polar coordinates, we put $x=r \cos \theta, y=r \sin \theta$. This gives $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{3}+y^{3}}{x^{2}+y^{2}}=$ $\lim _{r \rightarrow 0} r\left(\cos ^{3} \theta+\sin ^{3} \theta\right)$. Since

$$
0 \leq\left|r\left(\cos ^{3} \theta+\sin ^{3} \theta\right)\right| \leq 2|r|
$$

and since the leftmost limit and the rightmost limit are zero, it follows from the squeezing theorem that $\lim _{r \rightarrow 0} r\left(\cos ^{3} \theta+\sin ^{3} \theta\right)=0$.
2. (a) Find and sketch the domain of the function $f(x, y)=\sqrt{x^{2}+y^{2}-1}+\ln \left(4-x^{2}-y^{2}\right)$. Solution:
The domain of f contains the points (x, y) such that $x^{2}+y^{2}-1 \geq 0$ and $4-x^{2}-y^{2}>$ 0 . The inequality $x^{2}+y^{2}-1 \geq 0$ gives all points outside or on the circle $x^{2}+y^{2}=1$.
The inequality $4-x^{2}-y^{2}>0$ gives all points strictly inside the circle $x^{2}+y^{2}=4$. The intersection of these two sets give all points outside or on the circle $x^{2}+y^{2}=1$

but stricley inside the circle $x^{2}+y^{2}=4$.
(b) Find $h(x, y)=g(f(x, y))$ where $g(t)=t^{2}+\sqrt{t}$ and $f(x, y)=2 x-3 y-6$.

Solution:
$h(x, y)=(f(x, y))^{2}+\sqrt{f(x, y)}=(2 x-3 y-6)^{2}+\sqrt{2 x-3 y-6}$.
3. (a) Describe and sketch the graph of the surface $r=2 \cos \theta$.

Solution:
Since the equation $r=2 \cos \theta$ represents a circle in the $x y$-plane centered at $(1,0)$ and with diameter 2 , and since z is missing from the equation, the suface is a circular cylinder with directrix along the z-axis
(b) Write the equation $z=x^{2}-y^{2}$ (a) in cylindrical coordinates and (b) in spherical coordinates.
Solution:
In cylindrical coordinates,

$$
\begin{aligned}
z & =r^{2}\left(\cos ^{2} \theta-\sin ^{2} \theta\right) \\
& =r^{2} \cos 2 \theta
\end{aligned}
$$

In spherical coordinates (since $z=\rho \cos \varphi$ and $r=\rho \sin \varphi$),

$$
\begin{aligned}
\rho \cos \varphi & =\rho^{2} \sin ^{2} \varphi \cos 2 \theta \\
\rho & =\cot \theta \csc \theta \sec 2 \theta
\end{aligned}
$$

4. (a) Find the equation of the plane that passes through the line of intersection of the two planes $x-z=1$ and $y+2 z=3$ and is perpincicular to the plane $x+y-2 z=1$. Solution:
Put $z=0$ and $z=-1$ in the equations of the two planes $x-z=1$ and $y+2 z=3$ to get two points on the line of intersection. This yeilds the two points $P(1,3,0)$ and $Q(0,5,-1)$. Thus the vector $\overrightarrow{P Q}=\langle 1,-2,1\rangle$ is parallel to our plane. Since our plane is also perpindicular to the plane $x+y-2 z=1$, the vector $\langle 1,1,-2\rangle$ is also parallel to our plane. Therefore, the normal to our plane is given by

$$
\left|\begin{array}{ccc}
i & j & k \\
1 & -2 & 1 \\
1 & 1 & -2
\end{array}\right|=\langle 3,3,3\rangle .
$$

The equation of our plane is

$$
3(x-1)+3(y-3)+3 z=0
$$

which simplifies to

$$
x+y+z=4
$$

(b) Determine whether the function $u=\ln \sqrt{x^{2}+y^{2}}$ is a solution of the equation $u_{x x}+u_{y y}=0$.
Solution:

$$
\begin{aligned}
u & =\frac{1}{2} \ln \left(x^{2}+y^{2}\right), \\
u_{x} & =\frac{x}{\left(x^{2}+y^{2}\right)}, u_{y}=\frac{y}{\left(x^{2}+y^{2}\right)}, \\
u_{x x} & =\frac{y^{2}-x^{2}}{\left(x^{2}+y^{2}\right)}, u_{y y}=\frac{x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)} \\
u_{x x}+u_{y y} & =\frac{y^{2}-x^{2}}{\left(x^{2}+y^{2}\right)}+\frac{x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)}=0 .
\end{aligned}
$$

