1. Give the missing values:
(a) $\left(-2,-\frac{\pi}{2}\right)$ in polar coordinates $=(0,2)$ in rectangular coordinates.
(b) $\left(2, \frac{5 \pi}{4}\right)$ in polar coordinates $=\left(-2, \frac{\pi}{4}\right)$ in polar coordinates.
(c) $\left(3, \frac{7 \pi}{6}\right)$ in polar coordinates $=\left(-3, \frac{\pi}{6}\right)$ in polar coordinates.
(d) $(2,-2)$ in rectangular coordinates $=\left(-2 \sqrt{2}, \frac{3 \pi}{4}\right)$ in polar coordinates.
2. (4 points) Set up an integral to compute the common area between the rose $r=\sin 2 \theta$ and the circle $r=\cos \theta$.

Points of intersection:

$$
\begin{aligned}
\sin 2 \theta & =\cos \theta \\
2 \sin \theta \cos \theta & =\cos \theta \\
\cos \theta & =0 \text { or } \sin \theta=\frac{1}{2} \\
\theta & =-\frac{\pi}{6}, \frac{\pi}{6}, \frac{\pi}{2}
\end{aligned}
$$

The area is given by

$$
A=2 \int_{0}^{\pi / 6} \frac{1}{2} \sin ^{2} 2 \theta d \theta+\int_{\pi / 6}^{\pi / 2} \frac{1}{2} \cos ^{2} 2 \theta d \theta
$$

3. A parametric curve is said to cross itself if it passes through the same point (x, y) for two distinct values of the parameter t.
(a) Show that the curve $x=t^{3}-4 t, y=t^{2}$ crosses itself at the point $(0,4)$ and give the values of t at which the curve crosses itself.
(b) Find the equations of the two tangent lines to the curve in part (a) at the point $(0,4)$.
(a) $x=0$ when $t=-2,0,2$ and $y=4$ when $t=-2,2$. Thus the curve passes through the point $(0,4)$ when $t=-2,2$.
(b)

$$
\frac{d y}{d x}=\frac{2 t}{3 t^{2}-4}
$$

At $t=2, \frac{d y}{d x}=\frac{1}{2}$ and at $t=-2, \frac{d y}{d x}=-\frac{1}{2}$. Therefore, the equations of the tangents are

$$
y-4=\frac{1}{2} x
$$

and

$$
y-4=-\frac{1}{2} x
$$

4. (a) Show that the equation of the cardioid $r=1+\cos \theta$ can be written as $r=2 \cos ^{2} \frac{\theta}{2}$.
(b) Find the arclenght of the cardioid in part (a).
(a) The half angle identitiy states that

$$
2 \cos ^{2} \frac{\theta}{2}=(1+\cos \theta)
$$

Therefore,

$$
r=1+\cos \theta=2 \cos ^{2} \frac{\theta}{2}
$$

(b) The length of the cardioid is given by

$$
\begin{aligned}
L & =\int_{0}^{2 \pi} \sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}} d \theta \\
& =\int_{0}^{2 \pi} \sqrt{(1+\cos \theta)^{2}+\sin ^{2} \theta} d \theta \\
& =\int_{0}^{2 \pi} \sqrt{2+2 \cos \theta} d \theta \\
& =\sqrt{2} \int_{0}^{2 \pi} \sqrt{1+\cos \theta} d \theta \\
& =\sqrt{2} \int_{0}^{2 \pi} \sqrt{2 \cos ^{2} \frac{\theta}{2}} d \theta \\
& =2 \int_{0}^{2 \pi}\left|\cos \frac{\theta}{2}\right| d \theta \\
& =2\left(\int_{0}^{\pi / 2} \cos \frac{\theta}{2} d \theta-\int_{\pi / 2}^{3 \pi / 2} \cos \frac{\theta}{2} d \theta+\int_{3 \pi / 2}^{2 \pi} \cos \frac{\theta}{2} d \theta\right) \\
& =8
\end{aligned}
$$

5. (a) Use triple scalar product to determine whether the points $P((1,0,1), Q(2,4,6)$, $R(3,-1,2)$ and $S(6,2,8)$ lie in the same plane.
(b) Find the scalar and vector projections of the vector $\mathbf{u}=\langle 2,-3,1\rangle$ onto the vector $\mathbf{v}=\langle 1,6,-2\rangle$.
(a) The 4 points will be coplanar if the parallelipipped with sides $P Q, P R, P S$ has volume zero. We use triple scalar product to compute that volume:

$$
\begin{aligned}
\overrightarrow{P Q} & =\langle 1,4,5\rangle \\
\overrightarrow{P R} & =\langle 2,-1,1\rangle \\
\overrightarrow{P S} & =\langle 5,2,7\rangle \\
\overrightarrow{P Q} \cdot(\overrightarrow{P R} \times \overrightarrow{P S}) & =\left|\begin{array}{ccc}
1 & 4 & 5 \\
2 & -1 & 1 \\
5 & 2 & 7
\end{array}\right|=0 .
\end{aligned}
$$

Therefore, the 4 points lie in the same plane.
(b)

$$
\begin{aligned}
\operatorname{Comp}_{\mathbf{v}} \mathbf{u} & =\frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{v}|}=-\frac{18}{\sqrt{41}} \\
\operatorname{Proj}_{\mathbf{v}} \mathbf{u} & =\frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{v}|^{2}} \mathbf{v}=-\frac{18}{\sqrt{41}}\langle 1,6,-2\rangle \\
& =\left\langle-\frac{18}{\sqrt{41}},-\frac{108}{\sqrt{41}}, \frac{36}{\sqrt{41}}\right\rangle
\end{aligned}
$$

