KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS DEPARTMENT OF MATHEMATICAL SCIENCES **MATH 201** Exam # 1Oct 2, 2005

NAME:	Sec#:	ID#:	
1	·≈ = = ·		

SHOW ALL YOUR WORK

1. (5points) Give the missing values:

- (a) $\left(-2, -\frac{\pi}{2}\right)$ in polar coordinates = (,) in rectangular coordinates. (b) $\left(2, \frac{3\pi}{4}\right)$ in polar coordinates = (-2,) in polar coordinates.
- (c) $\left(-1,\frac{\pi}{3}\right)$ in polar coordinates = $\left(-,-\frac{5\pi}{3}\right)$ in polar coordinates.
- (d) $(3, \frac{7\pi}{6})$ in polar coordinates = $(-, \frac{\pi}{6})$ in polar coordinates.
- (e) (2, -2) in rectangular coordinates $= \begin{pmatrix} & , \frac{3\pi}{4} \end{pmatrix}$ in polar coordinates.
- 2. (5 points) Find all points of intersection between the cardioid $r = 1 + \cos \theta$ and the circle $\left(x - \frac{3}{2}\right)^2 + y^2 = \frac{9}{4}$, (a) in polar coordinates, and (b) in rectangular coordinates.

3. (5 points) A parametric curve is said to cross itself if it passes through the same point (x, y) for two distinct values of the parameter t. Show that the curve $x = t^3 - 4t$, $y = t^2$ crosses itself at the point (0, 4) and find the equations of the two tangent lines at that point.

4. (5 points) Calculate the arc length of the polar curve $r = \sin^3 \frac{\theta}{3}$ from $\theta = 0$ to $\theta = \frac{\pi}{2}$.

5. (5points) Set up an integral to compute the area inside the rose $r = \sin 2\theta$.

6. (a) (5points) Set up an integral to compute the area inside the cardioid $r = 1 + \cos \theta$ but outside the circle $r = \frac{3}{2}$.