KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS DEPARTMENT OF MATHEMATICAL SCIENCES
 MATH 201

Exam \# 1
Oct 2, 2005
NAME: \quad Sec\#: \quad ID\#:

SHOW ALL YOUR WORK

1. (5points) Give the missing values:
(a) $\left(-2,-\frac{\pi}{2}\right)$ in polar coordinates $=(, \quad)$ in rectangular coordinates.
(b) $\left(2, \frac{3 \pi}{4}\right)$ in polar coordinates $=(-2, \quad)$ in polar coordinates.
(c) $\left(-1, \frac{\pi}{3}\right)$ in polar coordinates $=\left(,-\frac{5 \pi}{3}\right)$ in polar coordinates.
(d) $\left(3, \frac{7 \pi}{6}\right)$ in polar coordinates $=\left(\quad, \frac{\pi}{6}\right)$ in polar coordinates.
(e) $(2,-2)$ in rectangular coordinates $=\left(, \frac{3 \pi}{4}\right)$ in polar coordinates.
2. (5 points) Find all points of intersection between the cardioid $r=1+\cos \theta$ and the circle $\left(x-\frac{3}{2}\right)^{2}+y^{2}=\frac{9}{4}$, (a) in polar coordinates, and (b) in rectangular coordinates.
3. (5 points) A parametric curve is said to cross itself if it passes through the same point (x, y) for two distinct values of the parameter t. Show that the curve $x=t^{3}-4 t, y=t^{2}$ crosses itself at the point $(0,4)$ and find the equations of the two tangent lines at that point.
4. (5 points) Calculate the arc length of the polar curve $r=\sin ^{3} \frac{\theta}{3}$ from $\theta=0$ to $\theta=\frac{\pi}{2}$.
5. (5points) Set up an integral to compute the area inside the rose $r=\sin 2 \theta$.
6. (a) (5points) Set up an integral to compute the area inside the cardioid $r=1+\cos \theta$ but outside the circle $r=\frac{3}{2}$.
