Exam # 1 Answers, Oct 2, 2005

- 1. Give the missing values:
 - (a) $(-2, -\frac{\pi}{2})$ in polar coordinates = (2, 0) in rectangular coordinates.
 - (b) $\left(2,\frac{3\pi}{4}\right)$ in polar coordinates = $\left(-2,\frac{7\pi}{4}\right)$ in polar coordinates.
 - (c) $\left(-1,\frac{\pi}{3}\right)$ in polar coordinates = $\left(-1,-\frac{5\pi}{3}\right)$ in polar coordinates.
 - (d) $(3, \frac{7\pi}{6})$ in polar coordinates = $(-3, \frac{\pi}{6})$ in polar coordinates.
 - (e) (2, -2) in rectangular coordinates = $\left(-\sqrt{8}, \frac{3\pi}{4}\right)$ in polar coordinates.
- 2. Find all points of intersection between the cardioid $r = 1 + \cos\theta$ and the circle $\left(x \frac{3}{2}\right)^2 + y^2 = \frac{9}{4}$, (a) in polar coordinates, and (b) in rectangular coordinates.

in polar coordinates. Solving with the equation (), we get $1 + \cos \theta = 3 \cos \theta$, or $\cos \theta = 1/2$. Therefore, $\theta = \pm \frac{\pi}{3}$. Computing, we get r = 3/2. Thus we have the two points of intersection $(3/2, \frac{\pi}{3})$ and $(3/2, -\frac{\pi}{3})$. From the graph, we see that (0, 0) is also a point of intesection. In rectangular coordinates, these points are $(\frac{3}{4}, \frac{3\sqrt{3}}{4}), (\frac{3}{4}, -\frac{3\sqrt{3}}{4})$ and (0, 0).

3. A parametric curve is said to cross itself if it passes through the same point (x, y) for two distinct values of the parameter t. Show that the curve $x = t^3 - 4t$, $y = t^2$ crosses itself at the point (0, 4) and find the equations of the two tangent lines at that point.

If the curve passes through the point (0,4), then $0 = t^3 - 4t$ and $4 = t^2$. The first equation gives $t = \pm 2$, t = 0 and the second gives $t = \pm 2.At$ t = 0, y = 0. Thus, t = 0 is excluded. The curve crosses itself at t = -2 and at t = 2. The slope of the tangent is $\frac{dy}{dx} = \frac{2t}{3t^2-4}$. At $t = \pm 2$, $\frac{dy}{dx} = \pm \frac{1}{2}$. Hence, the equations of the tangent lines are $y - 4 = \pm \frac{1}{2}x$.

4. Calculate the arclength of the polar curve $r = \sin^3 \frac{\theta}{3}$ from $\theta = 0$ to $\theta = \frac{\pi}{2}$.

 $r' = \sin^2 \frac{\theta}{3} \cos \frac{\theta}{3}.$

$$L = \int_0^{\frac{\pi}{2}} \sqrt{\sin^6 \frac{\theta}{3} + \sin^4 \frac{\theta}{3} \cos^2 \frac{\theta}{3}} d\theta$$
$$= \int_0^{\frac{\pi}{2}} \sin^2 \frac{\theta}{3} \sqrt{\sin^2 \frac{\theta}{3} + \cos^2 \frac{\theta}{3}} d\theta$$
$$= \int_0^{\frac{\pi}{2}} \sin^2 \frac{\theta}{3} d\theta = \frac{\pi}{4} - \frac{3\sqrt{3}}{8}.$$

- 5. Setup an integral to compute the area inside the rose $r = \sin 2\theta$. $A = 8 \int_0^{\frac{\pi}{4}} \sin^2 2\theta d\theta$.
- 6. We first find points of intersection of the two curves. Equating the expressions for r we get an integral to compute the area inside the cardioid $r = 1 + \cos \theta$ but outside the circle $r = \frac{3}{2}$.

We first find points of intersection of the two curves. Equating the expressions for r we get

$$\frac{3}{2} = 1 + \cos \theta$$
$$\cos \theta = \frac{1}{2}$$
$$\theta = \pm \frac{\pi}{3}.$$

The area is given by

$$A = 2 \int_0^{\frac{\pi}{3}} \left(1 + \cos\theta\right)^2 - \frac{9}{4}.$$