Exam \# 1 Answers, Oct 2, 2005

1. Give the missing values:
(a) $\left(-2,-\frac{\pi}{2}\right)$ in polar coordinates $=(2,0)$ in rectangular coordinates.
(b) $\left(2, \frac{3 \pi}{4}\right)$ in polar coordinates $=\left(-2, \frac{7 \pi}{4}\right)$ in polar coordinates.
(c) $\left(-1, \frac{\pi}{3}\right)$ in polar coordinates $=\left(-1,-\frac{5 \pi}{3}\right)$ in polar coordinates.
(d) $\left(3, \frac{7 \pi}{6}\right)$ in polar coordinates $=\left(-3, \frac{\pi}{6}\right)$ in polar coordinates.
(e) $(2,-2)$ in rectangular coordinates $=\left(-\sqrt{8}, \frac{3 \pi}{4}\right)$ in polar coordinates.
2. Find all points of intersection between the cardioid $r=1+\cos \theta$ and the circle $\left(x-\frac{3}{2}\right)^{2}+y^{2}=\frac{9}{4}$, (a) in polar coordinates, and (b) in rectangular coordinates.
The circle $\left(x-\frac{3}{2}\right)^{2}+y^{2}=\frac{9}{4}$ in rectangular coordinates is $r=3 \cos \theta$

in polar coordinates. Solving with the equation (), we get $1+\cos \theta=3 \cos \theta$, or $\cos \theta=1 / 2$. Therefore, $\theta= \pm \frac{\pi}{3}$. Computing, we get $r=3 / 2$. Thus we have the two points of intersection $\left(3 / 2, \frac{\pi}{3}\right)$ and $\left(3 / 2,-\frac{\pi}{3}\right)$. From the graph, we see that $(0,0)$ is also a point of intesection. In rectangular coordinates, these poins are $\left(\frac{3}{4}, \frac{3 \sqrt{3}}{4}\right),\left(\frac{3}{4},-\frac{3 \sqrt{3}}{4}\right)$ and $(0,0)$.
3. A parametric curve is said to cross itself if it passes through the same point (x, y) for two distinct values of the parameter t. Show that the curve $x=t^{3}-4 t, y=t^{2}$ crosses itself at the point $(0,4)$ and find the equations of the two tangent lines at that point.
If the curve passes through the point $(0,4)$, then $0=t^{3}-4 t$ and $4=t^{2}$. The first equation gives $t= \pm 2, t=0$ and the second gives $t= \pm 2$.At $t=0, y=0$. Thus, $t=0$ is excluded. The curve crosses itself at $t=-2$ and at $t=2$. The slope of the tangent is $\frac{d y}{d x}=\frac{2 t}{3 t^{2}-4}$. At $t= \pm 2, \frac{d y}{d x}= \pm \frac{1}{2}$. Hence, the equations of the tangent lines are $y-4= \pm \frac{1}{2} x$.
4. Calculate the arclength of the polar curve $r=\sin ^{3} \frac{\theta}{3}$ from $\theta=0$ to $\theta=\frac{\pi}{2}$.
$r^{\prime}=\sin ^{2} \frac{\theta}{3} \cos \frac{\theta}{3}$.

$$
\begin{aligned}
L & =\int_{0}^{\frac{\pi}{2}} \sqrt{\sin ^{6} \frac{\theta}{3}+\sin ^{4} \frac{\theta}{3} \cos ^{2} \frac{\theta}{3}} d \theta \\
& =\int_{0}^{\frac{\pi}{2}} \sin ^{2} \frac{\theta}{3} \sqrt{\sin ^{2} \frac{\theta}{3}+\cos ^{2} \frac{\theta}{3}} d \theta \\
& =\int_{0}^{\frac{\pi}{2}} \sin ^{2} \frac{\theta}{3} d \theta=\frac{\pi}{4}-\frac{3 \sqrt{3}}{8} .
\end{aligned}
$$

5. Setup an integral to compute the area inside the rose $r=\sin 2 \theta$.
$A=8 \int_{0}^{\frac{\pi}{4}} \sin ^{2} 2 \theta d \theta$.
6. We first find points of intersection of the two curves. Equating the expressions for r we get an integral to compute the area inside the cardioid $r=1+\cos \theta$ but outside the circle $r=\frac{3}{2}$.
We first find points of intersection of the two curves. Equating the expressions for r we get

$$
\begin{aligned}
\frac{3}{2} & =1+\cos \theta \\
\cos \theta & =\frac{1}{2} \\
\theta & = \pm \frac{\pi}{3}
\end{aligned}
$$

The area is given by

$$
A=2 \int_{0}^{\frac{\pi}{3}}(1+\cos \theta)^{2}-\frac{9}{4}
$$

