1. (a) Find the center and radius of the sphere $S: x^{2}+y^{2}+z^{2}+4 x-8 y-$ $2 z+5=0$.
Solution: Complete the squares to get $(x+2)^{2}+(y-4)^{2}+(z-1)^{2}=$ 16. Center: $(-2,4,1)$, Radius: 4
(b) Find points A, B on the sphere S such that $A B$ is a diagonal of the sphere.
Solution: one way to obtain such points is $(-2-4,4,1),(-2+4,4,1)$. This gives $(-6,4,1),(2,4,1)$.
(c) Find the distance from the origin to the sphere S.

Solution: Distance $=$ distance between the origin and the center radius of the sphere $=\sqrt{4+16+1}-4=\sqrt{21}-4$.
2. (a) Find the unit vector \mathbf{u} with direction angles $\frac{1}{3} \pi, \frac{1}{4} \pi$, γ, where γ is an obtuse angle.
Solution: To find γ, we use the formula $\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=1$, with $\alpha=\frac{1}{3} \pi, \beta=\frac{1}{4} \pi$. This gives $\cos ^{2} \gamma=\frac{1}{4}$. Therefore, $\cos \gamma=-\frac{1}{2}$ (since γ is obtuse).

$$
\begin{aligned}
\mathbf{u} & =\cos \alpha \mathbf{i}+\cos \beta \mathbf{j}+\cos \gamma \mathbf{k} \\
& =\frac{1}{2} \mathbf{i}+\frac{1}{\sqrt{2}} \mathbf{j}-\frac{1}{2} \mathbf{k}
\end{aligned}
$$

(b) Find the angle between the vectors the vectors $3 \mathbf{i}+\mathbf{j}-2 \mathbf{k}$ and \mathbf{i} $+2 \mathbf{j}-3 \mathbf{k}$ to the nearest hundredth radians.
Solution: $\cos \theta=\frac{11}{\sqrt{14} \sqrt{14}}=\frac{11}{14} . \theta=\cos ^{-1} \frac{11}{14}=0.67$.
(c) ($\mathbf{2}$ points) Find the vector projection of $\mathbf{a}=3 \mathbf{i}+\mathbf{j}-2 \mathbf{k}$ onto the vector $\mathbf{b}=\mathbf{i}+2 \mathbf{j}-3 \mathbf{k}$.
Solution: $\operatorname{Proj}_{\mathbf{b}} \mathbf{a}=\frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{b}\|^{2}} \mathbf{b}=\frac{11}{14}(\mathbf{i}+2 \mathbf{j}-3 \mathbf{k})=\frac{11}{14} \mathbf{i}+\frac{11}{7} \mathbf{j}-\frac{33}{14} \mathbf{k}$.
(d) Show that if $\mathbf{a} \cdot \mathbf{b}=\mathbf{a} \cdot \mathbf{c}$, then \mathbf{b} and \mathbf{c} have the same vector projction onto a.
Solution: $\operatorname{Proj}_{\mathbf{a}} \mathbf{c}=\frac{\mathbf{a} \cdot \mathbf{c}}{\|\mathbf{a}\|^{2}} \mathbf{a}=\frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{a}\|^{2}} \mathbf{a}=\operatorname{Proj}_{\mathbf{a}} \mathbf{b}$. Therefore, \mathbf{b} and \mathbf{c} have the same vector projction onto \mathbf{a}.
3. (a) Find the volume of the parallelepiped with edges along the vectors $2 \mathbf{i}+\mathbf{j}, 3 \mathbf{i}-2 \mathbf{k}, 3 \mathbf{j}+2 \mathbf{k}$.

Solution:

$$
\left|\begin{array}{ccc}
2 & 1 & 0 \\
3 & 0 & -2 \\
0 & 3 & 2
\end{array}\right|=6
$$

Therefore, the volume of the parallelepiped $=|6|=6$.
(b) Find the distance between the point $P(1,0,-1)$ and line through the points $A(1,2,1), B(2,2,-2)$.

Solution:

$$
\begin{aligned}
D & =\frac{\|\overrightarrow{P A} \times \overrightarrow{A B}\|}{\|\overrightarrow{A B}\|} . \\
\overrightarrow{P A} & =\langle 0,2,2\rangle \\
\overrightarrow{A B} & =\langle 1,0,-3\rangle \\
\overrightarrow{P A} \times \overrightarrow{A B} & =\left|\begin{array}{lll}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
0 & 2 & 2 \\
1 & 0 & 3
\end{array}\right|=6 \mathbf{i}+2 \mathbf{j}-2 \mathbf{k}
\end{aligned}
$$

Thus

$$
D=\frac{\sqrt{44}}{\sqrt{10}}=\sqrt{4.4}
$$

4. (a) Determine whether $l_{1}: x=3+t, y=1-t, z=5+2 t$ and $l_{2}: x=$ $1, y=4-t, z=9-2 t$ intersect. If so, find their point of intersection.
Solution: The system

$$
\begin{aligned}
& 3+t_{1}=1 \\
& 1-t_{1}=4-t_{2}
\end{aligned}
$$

has the solution

$$
t_{1}=-2, t_{2}=1
$$

we check the z values to get $5+2 t_{1}=1,9-2 t_{2}=7$. Since these two values are not the same, the two lines do not intersect.
(b) Find parametric equations of the line through $P(1,4,-3)$ and perpindicular to the $y z$-plane.
Solution: Direction of the line is $\langle 1,0,0\rangle$. Therefore, the equatoins of the line are

$$
x=1+t, y=4, z=-3
$$

5. (a) Find the equation of the plane through the point $P(2,0,1)$ and contains the line $l: x=1-2 t, y=1+4 t, z=2+t$.
Solution: A point A on the line l is $(1,1,2)$. The vector $\overrightarrow{P A}=$ $\langle-1,1,1\rangle$ is in the plane. Also, the direction $\langle-2,4,1\rangle$ of the line l is in the plane. Therefore, the normal to the plane is given by

$$
\mathbf{n}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
-1 & 1 & 1 \\
-2 & 4 & 1
\end{array}\right|=-3 \mathbf{i}-\mathbf{j}-2 \mathbf{k}
$$

Thus, the equaion of the plane is

$$
-3(x-2)-y-2(z-1)=0
$$

or

$$
3 x+y+2 z=8
$$

(b) Find the distance from the point $P(2,-1,3)$ to the plane $2 x+4 y-$ $z+1=0$.
Solution:

$$
D=\frac{|2(2)+4(-1)-3+1|}{\sqrt{4+16+1}}=\frac{2}{\sqrt{21}}
$$

