1. (a) ( $\mathbf{3}$ points) Find the center and radius of the sphere $S: x^{2}+y^{2}+$ $z^{2}+4 x-8 y-2 z+5=0$.
(b) ( 2 points) Find points $A, B$ on the sphere $S$ such that $A B$ is a diagonal of the sphere.
(c) ( 2 points) Find the distance from the origin to the sphere $S$.
2. (a) ( $\mathbf{2}$ points) Find the unit vector $\mathbf{u}$ with direction angles $\frac{1}{3} \pi, \frac{1}{4} \pi, \gamma$, where $\gamma$ is an obtuse angle.
(b) ( $\mathbf{2}$ points) Find the angle between the vectors the vectors $3 \mathbf{i}+\mathbf{j}-2 \mathbf{k}$ and $\mathbf{i}+2 \mathbf{j}-3 \mathbf{k}$ tp the neares hundredth radians.
(c) ( $\mathbf{2}$ points) Find the vector projection of $\mathbf{a}=3 \mathbf{i}+\mathbf{j}-2 \mathbf{k}$ onto the vector $\mathbf{b}=\mathbf{i}+2 \mathbf{j}-3 \mathbf{k}$.
(d) ( $\mathbf{2}$ points) Show that if $\mathbf{a} \cdot \mathbf{b}=\mathbf{a} \cdot \mathbf{c}$, then $\mathbf{b}$ and $\mathbf{c}$ have the same vector projction onto a.
3. (a) ( $\mathbf{2}$ points) Find the volume of the parallelepiped with edges along the vectors $2 \mathbf{i}+\mathbf{j}, 3 \mathbf{i}-2 \mathbf{k}, 3 \mathbf{j}+2 \mathbf{k}$.
(b) ( $\mathbf{3}$ points) Find the distance between the point $P(1,0,-1)$ and line through the points $A(1,2,1), B(2,2,-2)$.
4. (a) ( 3 points) Determine whether $l_{1}: x=3+t, y=1-t, z=5+2 t$ and $l_{2}: x=1, y=4-t, z=9-2 t$ intersect. If so, find their point of intersection.
(b) ( $\mathbf{2}$ points) Find parametric equations of the line through $P(1,4,-3)$ and perpindicular to the $y z$-plane.
5. (a) ( $\mathbf{3}$ points) Find the equation of the plane through the point $P(2,0,1)$ and contains the line $l: x=1-2 t, y=1+4 t, z=2+t$.
(b) ( 2 points) Find the distance from the point $P(2,-1,3)$ to the plane $2 x+4 y-z+1=0$.
