Given the points $P(1,-1,2), Q(2,3,4), B(0,1,-1)$, find:

1. the equation of the sphere for which $P Q$ is a diameter;

Ans: Mid point between P and Q is $\left(\frac{1+2}{2}, \frac{-1+3}{2}, \frac{2+4}{2}\right)=\left(\frac{3}{2}, 1,3\right)$.
Radius $=\frac{1}{2} \sqrt{(2-1)^{2}+(3+1)^{2}+(4-2)^{2}}=\frac{\sqrt{21}}{2}$. Equation of the sphere:

$$
\left(x-\frac{3}{2}\right)^{2}+(y-1)^{2}+(z-3)^{2}=\frac{21}{4}
$$

2. (3 points) the vectors $\overrightarrow{P B}, \overrightarrow{P Q}$ and $\overrightarrow{P B} \times \overrightarrow{P Q}$;

Ans: $\overrightarrow{P B}=\langle-1,2,-3\rangle, \overrightarrow{P Q}=\langle 1,4,2\rangle, \overrightarrow{P B} \times \overrightarrow{P Q}=\langle 16,-1,-6\rangle$
3. the direction cosines for $\overrightarrow{P B}$.

Ans: $\|\overrightarrow{P B}\|=\sqrt{14} . \cos \alpha=-\frac{1}{\sqrt{14}}, \cos \beta=\frac{2}{\sqrt{14}}, \cos \gamma=-\frac{3}{\sqrt{14}}$.
4. (3 points) the degree measure of the acute angle $\widehat{B P Q}$;

Ans: $\cos \theta=\frac{|\overrightarrow{P B} \cdot \overrightarrow{P Q}|}{\|\overrightarrow{P B}\|\|\overrightarrow{P Q}\|}=\frac{1}{\sqrt{14} \sqrt{21}}=\frac{1}{7 \sqrt{6}} . \theta=86.57^{\circ}$.
5. the area of the triangle $B P Q$;

Ans: $\triangle P B Q=\frac{1}{2}\|\overrightarrow{P B} \times \overrightarrow{P Q}\|=\frac{1}{2} \sqrt{293}$.
6. the hight of the triangle $B P Q$ when $P Q$ is the base;

Ans: $h=\frac{2 \triangle P B Q}{\|\overline{P Q}\|}=\frac{\sqrt{293}}{\sqrt{21}}=3.74$
7. a decomposition of the vector $\overrightarrow{P B}$ into two vectors, one in the direction of $\overrightarrow{P Q}$ and the other orthogonal to it.
Ans: $\operatorname{Proj} \overrightarrow{P Q} \overrightarrow{P B}=\frac{\overrightarrow{P B} \cdot \overrightarrow{P Q}}{\|\overrightarrow{P Q}\|^{2}} \overrightarrow{P Q}=\frac{1}{21}\langle 1,4,2\rangle=\left\langle\frac{1}{21}, \frac{4}{21}, \frac{2}{21}\right\rangle$.
Component orthogonal to $\overrightarrow{P Q}=\overrightarrow{P B}-\operatorname{Proj} \frac{\overrightarrow{P Q}}{} \overrightarrow{P B}=\langle-1,2,-3\rangle-\left\langle\frac{1}{21}, \frac{4}{21}, \frac{2}{21}\right\rangle=$ $\left\langle-\frac{22}{21}, \frac{38}{21},-\frac{65}{21}\right\rangle$.
8. parametric equations of the line that passes through P and Q;

Ans: $x=1+t, y=-1+4 t, z=2+2 t$.
9. all points C on the line through P and Q such that the triangle $P B C$ has a right angle;
Ans: Since C is on $P Q, C=(1+t,-1+4 t, 2+2 t)$ and $\overrightarrow{B C}=\langle 1+t,-2+4 t, 3+2 t\rangle$. We hae two possibilities: either angle $C=90^{\circ}$, or angle $B=90^{\circ}$. In the
first case, $\overrightarrow{B C} \cdot \overrightarrow{P Q}=0$. This gives

$$
\begin{aligned}
\langle 1+t,-2+4 t, 3+2 t\rangle \cdot\left\langle\frac{1}{21}, \frac{4}{21}, \frac{2}{21}\right\rangle & =0 \\
-1+21 t & =0 \\
t & =\frac{1}{21} \\
C & =\left(\frac{22}{21},-\frac{17}{21}, \frac{44}{21}\right) .
\end{aligned}
$$

In the second case, $\overrightarrow{B C} \cdot \overrightarrow{P B}=0$. This gives

$$
\begin{aligned}
\langle 1+t,-2+4 t, 3+2 t\rangle \cdot\langle-1,2,-3\rangle & =0 \\
-14+t & =0 \\
t & =14 \\
C & =(15,55,30)
\end{aligned}
$$

10. the distance between the point B and the line through P and Q;

Ans: You may notice that the answer is the same as problem 6. Alternatively, you may use problem 9 to compute $\|\overrightarrow{B C}\|$ at $t=\frac{1}{21}$. In either case you get 3.74.

