Show all your work

1. Find the rectangular coordinates for the points whose polar coordinates are:
(a) $\left(7,-\frac{\pi}{4}\right)$
(b) $(-1, \pi)$.
2. Find polar coordinates (r, θ) for the point whose rectangular coordinates is $(-\sqrt{3}, 1)$ such that:
(a) $r \geq 0$,
$0 \leq \theta<2 \pi$,
(b) $r \leq 0, \quad-\pi \leq \theta<\pi$.
3. Change the following polar equations into rectangular coordinates:
(a) $r^{2} \sin 2 \theta=1$
(b) $r=4 \cos \theta+4 \sin \theta$.
4. Test the following equations for symmetry with respect to the x-axis, the y-axis and the origin:
(a) $r=\cos 2 \theta$,
(b) $r=\cos \theta$.
5. Find $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ at $t=\frac{3 \pi}{4}$ for the parametric curve

$$
x=t \cos t, \quad y=t \sin t
$$

6. (a) Show that the two curves $r=1+\cos \theta$ and $r=2 \sin \theta$ intersect at $\left(\frac{8}{5}, \cos ^{-1} \frac{3}{5}\right)$ and $(0, \pi)$.
(b) Set up an integral (but do not integrate) to compute the area between the two curves in part (a).
