
1. (a) If f (x; y) = x2 � 5y; h (t) = t2 and g (x; y) = 5x � y2; compute
f (h (2) ; g (1; 1)) and g (h (2) ; f (1; 1))
Solution:
h (2) = 4; g (1; 1) = 5�1 = 4; f (h (2) ; g (1; 1)) = f (4; 4) = 16�20 =
�4:
f (1; 1) = �4: g (h (2) ; f (1; 1)) = 20� 16 = 4:

(b) Sketch and shade the domain of the function f (x; y) =
p
x (y2 � x):

Use dotted lines to indicate portions of the boundary that are not
included and solid lines to indicate portions of the boundary that are
included.
Solution:
The domain consists of all points (x; y) such that x

�
y2 � x

�
� 0:

The equation x
�
y2 � x

�
= 0 gives x = 0 or

�
y2 � x

�
= 0: The �rst of

these two equations represents the y-axis. The second represents the
parabola x = y2: The two curves divide the plane into the 4 regions
labled I, II, III, IV below. checking the inequality with sample points
in each region shows that the inequality is satis�ed by all points in
regions II, IV. Thus the solution set consists of the regions II, IV, the
y-axis and the parabola x = y2:
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2. (a) Compute

lim
(x;y)!(0;0)

tan 2
�
x2 + y2

�
+ 3 sin

�
x2 + y2

�
(x2 + y2)

:

Solution:
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Let z = x2 + y2: The problem is transformed into

lim
z!0

tan 2z + 3 sin z

z

= lim
z!0

2 sec2 z + 3 cos z

1
(by L�hospital�s rule)

= 2 + 3 = 5:

(b) Show that

lim
(x;y)!(1;2)

y � 2
x� 1

does not exist.
Solution:
a) Approach the point (1; 2) through the horizontal line y = 2: We
get the limit problem

lim
x!1

0

x� 1 = 0:

b) Approach the point (1; 2) through the line y = 2x: We get the
limit problem

lim
x!1

2x� 2
x� 1 = 2:

Since we obtain two di¤erent limits, the limit does not exist.

3. (a) Find a point P at which the function f (x; y) = x2y has a local linear
approximation L (x; y) = 4y � 4x+ 8:
Solution:
fx = 2xy; fy = x2: At the point P; fx = �4; fy = 4: Therefore,
2xy = �4; x2 = 4: Solving the second equation, we get x = �2:
Substituting in the �rst, we get y = �1: We have two possible solu-
tions: (2;�1) and (�2; 1) : Computing the local linear approximation
at (2;�1) we get L (x; y) = 4y � 4x+ 8: Computing the local linear
approximation at (�2; 1) we get L (x; y) = 4y�4x�8: Thus P is the
point (2;�1) :

(b) Determine dw for w =
p
x+

p
y +

p
z:

Solution:
dw = wxdx+wydy+wzdz: Thus, dw = 1

2
p
x
dx+ 1

2
p
ydy+

1
2
p
z
wzdz:

4. (a) Suppose w = xy + yz; y = sinx; z = ex: Use a chain rule to �nd
dw

dx
:

Solution:

dw

dx
=

@w

@x
+
@w

@y

@y

@x
+
@w

@z

@z

@x

= y + (x+ z) cosx+ yex:
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(b) Find
@z

@x
;
@z

@y
for yex � 5 sin 3z = 3z:

Solution:
Let f (x; y; z) = yex � 5 sin 3z � 3z: By implicit di¤erentiation,

@z

@x
= �

@f
@x
@f
@z

=
yex

3 + 15 cos 3z
;

@z

@y
= �

@f
@y

@f
@z

=
ex

3 + 15 cos 3z
:

5. (a) Given that fx (�5; 1) = �3; fy (�5; 1) = 2; �nd the directional deriv-
ative of f at the point P (�5; 1) in the direction from P to Q (�4; 3) :
Solution:
��!
PQ = h1; 2i : u =

D
1p
5
; 2p

5

E
: Duf = rf:u = h�3; 2i �

D
1p
5
; 2p

5

E
=

1p
5
:

(b) Find a unit vector in the direction in which the functions f (x; y) =
4exy sin z decreases most rapidly at the point P

�
0; 1; �3

�
and �nd the

rate of change of f at P in that direction.
Solution:
rf = h4yexy sin z; 4xexy sin z; 4exy cos zi :rf (P ) =



2
p
3; 0; 2

�
: krf (P )k =

4: Thus, f decreases most rapidly in the direction os the vector

�rf (P ) = krf (P )k =
D
�
p
3
2 ; 0;

1
2

E
: The rate of change of f in that

direction is �krf (P )k = �4:
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