- 1. (a) **(3 points)** If $f(x,y) = x^2 5y$, $h(t) = t^2$ and $g(x,y) = 5x y^2$, compute f(h(2), g(1, 1)) and g(h(2), f(1, 1)).
 - (b) (3 points) Sketch and shade the domain of the function $f(x, y) = \sqrt{x(y^2 x)}$. Use dotted lines to indicate portions of the boundary that are not included and solid lines to indicate portions of the boundary that are included.
- 2. (a) (3 points) Compute

$$\lim_{(x,y)\to(0,0)} \frac{\tan 2(x^2+y^2)+3\sin(x^2+y^2)}{(x^2+y^2)}$$

(b) (3 points) Show that

$$\lim_{(x,y)\to(1,2)}\frac{y-2}{x-1}$$

does not exist.

- 3. (a) (3 points) Find a point P at which the function $f(x, y) = x^2 y$ has a local linear approximation L(x, y) = 4y 4x + 8.
 - (b) Determine dw for $w = \sqrt{x} + \sqrt{y} + \sqrt{z}$.
- 4. (a) (3 points) Suppose w = xy + yz, $y = \sin x$, $z = e^x$. Use a <u>chain rule</u> to find $\frac{dw}{dx}$.

(b) (3 points) Find
$$\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}$$
 for $ye^x - 5\sin 3z = 3z$.

- 5. (a) (3 points) Given that $f_x(-5,1) = -3$, $f_y(-5,1) = 2$, find the directional derivative of f at the point P(-5,1) in the direction from P to Q(-4,3).
 - (b) (3 points) Find a unit vector in the direction in which the functions $f(x, y) = 4e^{xy} \sin z$ decreases most rapidly at the point $P(0, 1, \frac{\pi}{3})$ and find the rate of change of f at P in that direction.