1. (a) (3 points) If $f(x, y)=x^{2}-5 y, h(t)=t^{2}$ and $g(x, y)=5 x-y^{2}$, compute $f(h(2), g(1,1))$ and $g(h(2), f(1,1))$.
(b) (3 points) Sketch and shade the domain of the function $f(x, y)=$ $\sqrt{x\left(y^{2}-x\right)}$. Use dotted lines to indicate portions of the boundary that are not included and solid lines to indicate portions of the boundary that are included.
2. (a) (3 points) Compute

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{\tan 2\left(x^{2}+y^{2}\right)+3 \sin \left(x^{2}+y^{2}\right)}{\left(x^{2}+y^{2}\right)}
$$

(b) (3 points) Show that

$$
\lim _{(x, y) \rightarrow(1,2)} \frac{y-2}{x-1}
$$

does not exist.
3. (a) (3 points) Find a point P at which the function $f(x, y)=x^{2} y$ has a local linear approximation $L(x, y)=4 y-4 x+8$.
(b) Determine $d w$ for $w=\sqrt{x}+\sqrt{y}+\sqrt{z}$.
4. (a) (3 points) Suppose $w=x y+y z, y=\sin x, z=e^{x}$. Use a chain rule to find $\frac{d w}{d x}$.
(b) (3 points) Find $\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}$ for $y e^{x}-5 \sin 3 z=3 z$.
5. (a) (3 points) Given that $f_{x}(-5,1)=-3, f_{y}(-5,1)=2$, find the directional derivative of f at the point $P(-5,1)$ in the direction from P to $Q(-4,3)$.
(b) (3 points) Find a unit vector in the direction in which the functions $f(x, y)=4 e^{x y} \sin z$ decreases most rapidly at the point $P\left(0,1, \frac{\pi}{3}\right)$ and find the rate of change of f at P in that direction.

