Show all your work

1. Find the rectangular coordinates for the points whose polar coordinates are:
(a) $\left(7,-\frac{\pi}{4}\right)$
(b) $(-1, \pi)$.
(a) $x=7 \cos \left(-\frac{\pi}{4}\right)=\frac{7}{\sqrt{2}}, y=7 \sin \left(-\frac{\pi}{4}\right)=-\frac{7}{\sqrt{2}}$. Point is $\left(\frac{7}{\sqrt{2}},-\frac{7}{\sqrt{2}}\right)$.
(b) $x=-\cos (\pi)=1, y=-\sin (\pi)=-1$. Point is $(1,-1)$.
2. Find polar coordinates (r, θ) for the point whose rectangular coordinates is $(\sqrt{3},-1)$ such that:
(a) $r \geq 0, \quad 0 \leq \theta<2 \pi$,
(b) $r \leq 0, \quad-\pi \leq \theta<\pi$.
(a) $r=\sqrt{3+1}=2, \tan \theta=-\frac{1}{\sqrt{3}}$. $\theta=\frac{11 \pi}{6}$. Point is $\left(2, \frac{11 \pi}{6}\right)$.
(b) $r=-\sqrt{3+1}=-2, \tan \theta=-\frac{1}{\sqrt{3}}$. $\theta=\frac{11 \pi}{6}-\pi=\frac{5 \pi}{6}$. Point is $\left(-2, \frac{5 \pi}{6}\right)$.
3. Change the following polar equations into rectangular coordinates:
(a) $r^{2} \sin 2 \theta=1$
(b) $r=4 \cos \theta+4 \sin \theta$.
(a) $r^{2} \times 2 \sin \theta \cos \theta=1$. Rearranging, $2(r \sin \theta)(r \cos \theta)=1$. Therefore, $2 x y=1$.
(b) $r^{2}=4 r \cos \theta+4 r \sin \theta$. Therefore, $x^{2}+y^{2}=4 x+4 y$.
4. Test the following equations for symmetry with respect to the x-axis, the y-axis and the origin:
(a) $r=\sin 2 \theta$,
(b) $r=\cos \theta$.
(a) replace θ by $-\theta$, the equation changes. Replace θ by $\theta+\pi$ and r by $-r$. The equation does not change. Therefore, we have x-symmetry.
Replace θ by $\pi-\theta$, equation changes. Replace θ by $-\theta$ and r by $-r$. The equation does not change. Therefore, we have y-symmetry. It follows that we also have O-symmetry.
(b) replace θ by $-\theta$, the equation does not change. Therefore, we have x-symmetry.
Replace θ by $\pi-\theta$, equation changes. Replace θ by $-\theta$ and r by $-r$, The equation changes.
Therefore, we do not have y-symmetry. It follows that we also do not have O-symmetry.
5. Find $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ at $t=\frac{\pi}{4}$ for the parametric curve

$$
x=t \cos t, \quad y=t \sin t
$$

$$
\begin{aligned}
& \frac{d y}{d t}=1+\cos t \cdot \frac{d x}{d t}=1-\sin t \cdot \frac{d y}{d x}=\frac{1+\cos t}{1-\sin t} \cdot \frac{d}{d t}\left(\frac{d y}{d x}\right)=\frac{1-\sin t+\cos t}{(1-\sin t)^{2}} . \\
& \frac{d^{2} y}{d x^{2}}=\frac{1-\sin t+\cos t}{(1-\sin t)^{3}} . \text { At } t=\frac{\pi}{6} \\
& \frac{d y}{d x}=\frac{1+\sqrt{3} / 2}{1 / 2}=2+\sqrt{3} \cdot \frac{d^{2} y}{d x^{2}}=\frac{1 / 2+\sqrt{3} / 2}{1 / 8}=4+4 \sqrt{3} .
\end{aligned}
$$

6. (a) Show that the two curves $r=1+\cos \theta$ and $r=2 \sin \theta$ intersect at $\left(\frac{8}{5}, \cos ^{-1} \frac{3}{5}\right)$ and $(0, \pi)$.

$$
1+\cos \theta=2 \sin \theta
$$

Square both sides and simplify to get

$$
\begin{aligned}
1+2 \cos \theta+\cos ^{2} \theta & =4\left(1-\cos ^{2} \theta\right) \\
5 \cos ^{2} \theta+2 \cos \theta-3 & =0
\end{aligned}
$$

Therefore,

$$
\cos \theta=\frac{-2 \pm \sqrt{4+60}}{10}=\frac{-1 \pm 4}{5}=-1, \frac{3}{5}
$$

(b) Set up an integral (but do not integrate) to compute the area between the two curves in part (a).
$\overline{\text { Area }=\frac{1}{2} \int_{0}^{\cos ^{-1} \frac{3}{5}}(2 \sin \theta)^{2} d \theta+\frac{1}{2} \int_{\cos ^{-1} \frac{3}{5}}^{\pi}(1+\cos \theta)^{2} d \theta .}$

