- 1. (a) (2 points) Transform the equation $r = \csc \theta \cot \theta$ into rectangular coordinates and sketch its graph.
 - (b) (3 points) Transform the polar equation $x^2 + y^2 + 4y = 0$ into a polar equation of the form $r = f(\theta)$ and sketch its graph.
 - (c) (2 points each) Sketch the graphs of the following polar equaions

i. $r = \cos \theta, \ \frac{\pi}{2} \le \theta \le \pi$ ii. $r = 1 + \cos \theta, \ -\frac{\pi}{2} \le \theta \le \pi$ iii. $r = 2 \sec \theta, \ 0 \le \theta \le \frac{\pi}{4}$.

- 2. (a) (3 points) Find $\frac{dy}{dx}$ at $t = \frac{\pi}{6}$ for the parametric curve $x = t + \cos t$, $y = 1 \sin t$.
 - (b) (2 points each)
 - i. Show that the arc length of the cardioid $r = 1 + \cos \theta$ is given by $L = \sqrt{2} \int_0^{2\pi} \sqrt{1 + \cos \theta} d\theta$.
 - ii. Using the identity $1 + \cos \theta = 2\cos^2 \frac{\theta}{2}$ show how to compute the arc length of the cardioid.
 - (c) (4 points) Find the equation of the tangent line to the graph of the curve $r = \frac{1}{\theta}$ at $\theta = \frac{\pi}{2}$.
- 3. (a) (2 points) Set up an integral to compute the area of the region in the first quadrant within the cardioid $r = 1 + \sin \theta$.
 - (b) (3 points each)
 - i. Find all points of intersection of the two cardioids $r = 1 + \cos \theta$ and $r = 3 (1 - \cos \theta)$.
 - ii. Give the common area between the two cardioids in terms of integrals.