1. (a) (2 points) Transform the equation $r=\csc \theta \cot \theta$ into rectangular coordinates and sketch its graph.
(b) (3 points) Transform the polar equatoin $x^{2}+y^{2}+4 y=0$ into a polar equation of the form $r=f(\theta)$ and sketch its graph.
(c) (2 points each) Sketch the graphs of the following polar equaions
i. $r=\cos \theta, \frac{\pi}{2} \leq \theta \leq \pi$
ii. $r=1+\cos \theta,-\frac{\pi}{2} \leq \theta \leq \pi$
iii. $r=2 \sec \theta, 0 \leq \theta \leq \frac{\pi}{4}$.
2. (a) (3 points) Find $\frac{d y}{d x}$ at $t=\frac{\pi}{6}$ for the parametric curve $x=t+\cos t$, $y=1-\sin t$.
(b) (2 points each)
i. Show that the arc length of the cardioid $r=1+\cos \theta$ is given by $L=\sqrt{2} \int_{0}^{2 \pi} \sqrt{1+\cos \theta} d \theta$.
ii. Using the identity $1+\cos \theta=2 \cos ^{2} \frac{\theta}{2}$ show how to compute the arc length of the cardioid.
(c) (4 points) Find the equation of the tangent line to the graph of the curve $r=\frac{1}{\theta}$ at $\theta=\frac{\pi}{2}$.
3. (a) ($\mathbf{2}$ points) Set up an integral to compute the area of the region in the first quadrant within the cardioid $r=1+\sin \theta$.
(b) (3 points each)
i. Find all points of intersection of the two cardioids $r=1+\cos \theta$ and $r=3(1-\cos \theta)$.
ii. Give the common area between the two cardioids in terms of integrals.
