1. In each part find the equation of the sphere with center $(2,-1,-3)$ and satisfying the given conditions.
(a) (2 points) Tangent to the $x y$-plane

Radius of the sphere is $|-3|=3$
Therefore, equation of the sphere is

$$
(x-2)^{2}+(y+1)^{2}+(z+3)^{2}=9
$$

or

$$
x^{2}+y^{2}+z^{2}+2 y-4 x+6 z+5=0
$$

(b) (2 points) Tangent to the x-axis

Radius of the sphere is $\sqrt{(-1)^{2}+(-3)^{2}}=\sqrt{10}$ Therefore, equation of the sphere is

$$
(x-2)^{2}+(y+1)^{2}+(z+3)^{2}=10
$$

or

$$
x^{2}+y^{2}+z^{2}+2 y-4 x+6 z+3=0
$$

(c) (2 points) Passes through the origin

Radius of the sphere is $\sqrt{(2)^{2}+(-1)^{2}+(-3)^{2}}=\sqrt{14}$
Therefore, equation of the sphere is

$$
(x-2)^{2}+(y+1)^{2}+(z+3)^{2}=14
$$

or

$$
x^{2}+y^{2}+z^{2}+2 y-4 x+6 z=0 .
$$

2. A parallelogram has $\mathbf{i}-\mathbf{j}+\mathbf{k}, \mathbf{i}-3 \mathbf{j}+2 \mathbf{k}$ as adjacent sides. Find
(a) (2 points) Its area.

$$
\text { Area }=\|(\mathbf{i}-\mathbf{j}+\mathbf{k}) \times(\mathbf{i}-3 \mathbf{j}+2 \mathbf{k})\|=\left\|\left.\begin{array}{|ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & -1 & 1 \\
1 & -3 & 2
\end{array} \right\rvert\,\right\|=\|\mathbf{i}-\mathbf{j}-2 \mathbf{k}\|=
$$

(b) (2 points) The lengths of its heights.

The parallelogram has two heights. If $\mathbf{i}-\mathbf{j}+\mathbf{k}$ is the base, the height is $\frac{\sqrt{6}}{\|\mathbf{i}-\mathbf{j}+\mathbf{k}\|}=\sqrt{2}$.

If $\mathbf{i}-3 \mathbf{j}+2 \mathbf{k}$ is the base, the height is $\frac{\sqrt{6}}{\|\mathbf{i}-3 \mathbf{j}+2 \mathbf{k}\|}=\sqrt{\frac{3}{7}}$.
(c) (2 points) The lengths of its diagonals.

One diagonal is $(\mathbf{i}-\mathbf{j}+\mathbf{k})+(\mathbf{i}-3 \mathbf{j}+2 \mathbf{k})=3 \mathbf{k}-4 \mathbf{j}+2 \mathbf{i}$. Its length is $\sqrt{29}$.

The other diagonal is $(\mathbf{i}-\mathbf{j}+\mathbf{k})-(\mathbf{i}-3 \mathbf{j}+2 \mathbf{k})=2 \mathbf{j}-\mathbf{k}$. Its length is $\sqrt{5}$
3. Given the points $P(-3,1,2), A(1,1,0), B(-2,3,-4)$ find
(a) (2 points) $\operatorname{Proj}_{\overrightarrow{A B}} \overrightarrow{A P}$

$$
\overrightarrow{A B}=\langle-3,1,-4\rangle, \overrightarrow{A P}=\langle-4,0,2\rangle . \operatorname{Proj}_{\overrightarrow{A B}} \overrightarrow{A P}=\frac{\overrightarrow{A B} \cdot \overrightarrow{A P}}{\|\overrightarrow{A B}\|^{2}} \overrightarrow{A B}=
$$ $\frac{2}{7}\langle-3,1,-4\rangle$.

(b) (2 points) The component of $\overrightarrow{A P}$ orthogonal to $\overrightarrow{A B}$.

$$
\mathbf{v}=\overrightarrow{A P}-\operatorname{Proj}_{\overrightarrow{A B}} \overrightarrow{A P}=\langle-4,0,2\rangle-\frac{2}{7}\langle-3,1,-4\rangle=\left\langle-\frac{22}{7},-\frac{2}{7}, \frac{22}{7}\right\rangle
$$

(c) (2 points) The distance from the point P to the line through A, B.

Distance $=\|\mathbf{v}\|=\frac{2}{7} \sqrt{243}$.
4. Consider the parallelepipped with adjacent edges $\mathbf{u}=\langle 2,2,1\rangle, \mathbf{v}=$ $\langle 1,1,2\rangle, \mathbf{w}=\langle 1,3,3\rangle$.
(a) (2 points) Find the volume

$$
\text { Volume }=\left\|\begin{array}{lll}
2 & 2 & 1 \\
1 & 1 & 2 \\
1 & 3 & 3
\end{array}\right\||=|-6|=6
$$

(b) (2 points) Find the area of the face determined by \mathbf{u} and \mathbf{w}.

$$
\begin{aligned}
& \quad \text { Area }=\|\mathbf{u} \times \mathbf{w}\|=\left\|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
2 & 2 & 1 \\
1 & 3 & 3
\end{array}\right\|\|=\| 3 \mathbf{i}-5 \mathbf{j}+4 \mathbf{k} \|=\sqrt{16+25+9} \\
& =\sqrt{50}=7.0711
\end{aligned}
$$

(c) (2 points) Find the angle between \mathbf{v} and the face determined by \mathbf{u} and \mathbf{w}.

Length of perpindicular from \mathbf{v} to the base $\mathbf{u}, \mathbf{w}=\frac{6}{\sqrt{50}}$. Therefore, if θ is the required angle, $\tan \theta=\frac{6}{\sqrt{50}} /\|\mathbf{v}\|=\frac{6}{\sqrt{50} \sqrt{6}}=\frac{\sqrt{3}}{5}$.
5. Find parametric equations of the line through the point $(5,0,-2)$ that is parallel to the planes $x-4 y+2 z=0$ and $2 x+3 y-z+1=0$.

The required line is parallel to the line of intersection of the two planes. Therefore, its direction is

$$
\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & -4 & 2 \\
2 & 3 & -1
\end{array}\right|=-2 \mathbf{i}+5 \mathbf{j}+11 \mathbf{k}
$$

Equation of the required plane is

$$
-2(x-5)+5 y+11(z+2)=0
$$

or

$$
-2 x+5 y+11 z+32=0
$$

6. Find the equation of the plane through the origin that is parallel to the plane $4 x-2 y+7 z+12=0$.

Normal to the plane is $\langle 4,-2,7\rangle$. Equation of the plane: $4 x-2 y+7 z=$ 0.

