1. ($\mathbf{4} \mathbf{p} \mathbf{t s}$) Find the equation of the sphere with center at $(2,3,-1)$ That passes through the point $(4,-1,1)$.
Radius $=\sqrt{(4-2)^{2}+(-1-3)^{2}+(1+1)^{2}}=\sqrt{24}$.
Therefore, equation is : $(x-2)^{2}+(y+1)^{2}+(z-1)^{2}=24$
or $x^{2}+y^{2}+z^{2}+2 y-4 x-2 z=18$.
2. ($4 \mathbf{p t s}$) Find the point C on the line segment joining $A(2,2,1)$ to $B(3,-1,2)$ that divides it in the ratio 2:3
The point is $C=\frac{1}{3} A+\frac{2}{3} B=\frac{1}{3}(2,2,1)+\frac{2}{3}(3,-1,2)=\left(\frac{8}{3}, 0, \frac{5}{3}\right)$.
3. ($\mathbf{4} \mathbf{p t s}$) Find the vector component of $\mathbf{v}=2 \mathbf{i}-\mathbf{j}+3 \mathbf{k}$ along $\mathbf{b}=\mathbf{i}+2 \mathbf{j}+2 \mathbf{k}$ and the vector component of \mathbf{v} orthogonal to \mathbf{b}.
$\operatorname{Proj}_{\mathbf{b}} \mathbf{v}=\frac{\mathbf{v} \cdot \mathbf{b}}{\|\mathbf{b}\|^{2}} \mathbf{b}=\frac{6}{9}(\mathbf{i}+2 \mathbf{j}+2 \mathbf{k})=\frac{2}{3} \mathbf{i}+\frac{4}{3} \mathbf{j}+\frac{4}{3} \mathbf{k}$.
Orthogonal component $=(2 \mathbf{i}-\mathbf{j}+3 \mathbf{k})-\left(\frac{2}{3} \mathbf{i}+\frac{4}{3} \mathbf{j}+\frac{4}{3} \mathbf{k}\right)=\frac{4}{3} \mathbf{i}-\frac{7}{3} \mathbf{j}+\frac{5}{3} \mathbf{k}$.
4. (4 pts) Find the area of the triangle $A B C$, where $A=(2,-2,1), B=(3,-1,2), C=$ $(3,-2,3)$.
Area of the triangle $=\frac{1}{2}\|\overrightarrow{A B} \times \overrightarrow{A C}\|=\left\|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 1 & 1 \\ 1 & 0 & 2\end{array}\left|\left\|\left\lvert\,=\frac{1}{2}\right.\right\| 2 \mathbf{i}-\mathbf{k}-\mathbf{j} \|=\frac{\sqrt{6}}{2}\right.\right.$.
5. ($4 \mathbf{p t s}$) Find the parametric equations of the line that contains the point $P(0,2,1)$ and intersects the line $L: x=2 t, y=1-2 t, z=3-t$ at a right angle.
Assume the point on the line is $C(2 t, 1-2 t, 3-t)$. The vector $\overrightarrow{P C}$ is orthogonal to the line L. Therefore,

$$
\overrightarrow{P C} \cdot\langle 2,-2,-1\rangle=\langle-2 t, 1+2 t,-2+t\rangle \cdot\langle 2,-2,-1\rangle=0
$$

This gives the equation $-4 t-2-4 t+2-t=-9 t=0$. Hence $t=0$ and $\overrightarrow{P C}=\langle 0,1,-2\rangle$.
Equations of the line are $x=0, y=2-t, z=1+2 t$.
6. (4 pts) Find parametric equations of the line through the point $(5,0,-2)$ that is parallel to the planes $x-4 y+2 z=0$ and $2 x+3 y-z+1=0$.
The line is parallel to the line of intersection of the two planes. Therefore, it direction is

$$
\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & -4 & 2 \\
2 & 3 & -1
\end{array}\right|=-2 i+5 j+11 k
$$

Equations of the line are $x=5-2 t, y=5 t, z=-2+11 t$.
7. $\mathbf{4} \mathbf{p t s}$) Find the distance between the point $(2,3,-1)$ and the plane $2 x+y+z=0$.

$$
D=\frac{|2 \times 2+1 \times 3-1 \times 1|}{\sqrt{4+1+1}}=\sqrt{6}
$$

8. (4 pts) Locate the point of intersection of the plane $2 x+y-z=0$ and the line through $(3,1,0)$ that is perpendicular to the plane.
The line is parallel to the normal to the plane. Its equation is $x=3+2 t, y=$ $1+t, z=-t$. It intersects the plane when $2(3+2 t)+(1+t)+t=6 t+7=0$. This gives $t=-\frac{7}{6}$. Insert this value of t in the equation of the line to get the point of intersection $\left(\frac{2}{3},-\frac{1}{6}, \frac{7}{6}\right)$.
9. ($4 \mathbf{p} \mathbf{t s}$) Find the points of intersection of the line $x=2 t, y=1-t, z=2-3 t$ and the coordinate planes.
$x y$-intercept: put $z=0$, this gives $t=\frac{2}{3}$. Point of intersection is $\left(\frac{4}{3}, \frac{1}{3}, 0\right)$.
$y z$-intercept. Put $x=0$, this gives $t=0$. Point of itnersection is $(0,1,2)$
$z x$-intercept. Put $y=0$, this gives $t=1$. Point of itnersection is $(2,0,-1)$
10. (4 pts) Sketch the surface $z=y^{2}-x^{2}$

. What are the traces of this surface in the planes $z=1, z=0, z=-1$?
Trace in the plane $z=1$ is the hyperbola $y^{2}-x^{2}=1$. Trace in the plane $z=0$ is the two lines $y= \pm x$. Trace in the plane $z=-1$ is the hyperbola $x^{2}-y^{2}=1$.
