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1 Curves in R2

Consider a function C from an interval J = [a; b] into R2 with derivative Cp (p) 6= 0 8p 2 J:
One can think of the point x = C (p) as traversing a curve  while p traverses J: We do not
call C itself a curve. Instead, any function eC obtained from C by a suitable change of the
parameter is regarded as representing the same curve  as C:
The derivative Cp of C has the geometric interpretation as a tangent vector. To see this,

suppose p0 is a point of J and that p is su¢ ciently close to p0 that p 2 J: De�ne the linear
function y (p) by

y (p) = C (p0) + (p� p0)Cp (p0) :

This line passes through C (p0) and has direction Cp (p0) : Then

C (p)� y (p)

p� p0
=
C (p)� C (p0)

p� p0
� Cp (p0)! 0 as p! p0:

Hence y (p) is tangent to the function C (p) at p0 (recall that the functions f and g are
tangent at x0 if limx!x0

jf(x)�g(x)j
jx�x0j = 0):

Example Let C (p) =
�

p2

log p

�
; J = [1=2; 2] : Find the tangent line at

�
1
0

�
: In this exam-

ple p0 = 1:Cp (p) =

�
2p
1=p

�
; Cp (1) =

�
2
1

�
: The tangent line isy (p) =

�
1
0

�
+

(p� 1)
�
2
1

�
=

�
2p� 1
p� 1

�
in parametric form. That is x (p) = 2p � 1 and y (p) =

p� 1: In Cartesian form, by eliminating p; we get

2y = x� 1:
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Observe also that the curve is traversed from the point
�

1=4
� log 2

�
to the point�

4
log 2

�
:

C is a simple curve: it does not cross itself.

De�nition 1 Let C be any parametric representation of a curve  on an interval J = [a; b].
Let � : J ! [�; �]be any continuously di¤erentiable function such that

1. �0 (p) > 0 8 p 2 J;

2. � (a) = �; � (b) = �:

Write q = � (p) : Then the function eC :[�; �]! R2 de�ned by

eC (q) = eC (� (p))
= C (p)

is called a reparametrizaion of the curve :

The derivatives also satisfy the following relations

eCq (q) =
d

dq
C (p)

=
d

dp
C (p)

dp

dq

=
1

�0 (p)
Cp (p) :

If eC and C are parametrizations of  according to De�nition 1, we will say that eC and C
are equivalent. The curve  will be identi�ed with any of its equivalent representations. 
will be called a simple arc if it does not cross itself, i.e, if for some parametrization C; we
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have C (p1) 6= C (p2) for p1 6= p2: If the aforementioned condition is satis�ed except when
p1 = a; p2 = b (where C (a) = C (b)), we say that  is a simple closed curve.
The tangent vector dC

dp
will be denoted by T: That is

T =
dC

dp
= Cp

=

�
xp
yp

�
:

The assumption that Cp (p) 6= 0 for all p 2 J implies that jT j = jCpj > 0: Thus the curve 
has a well de�ned tangent vector for all p 2 J:

1.1 Parametrization by arclength

The arc length on  is de�ned by

s =

Z p

a

jCp (�)j d�:

Lemma 2 The arc length is independent of the parametrization of :

Proof. Suppose C and eC are parametrizations of  according to De�nition 1. Then

C = eC � �;
Cp = eCq � ��0:

In terms of the parametrization eC; the arclength is given byZ q

�

��� eCq (�)��� d�:
Using the change of variable

� = � (�) ; d� = �0 (�) d�

we get Z q

�

��� eCq (�)��� d� =

Z p

a

jCp (�)j
1

�0 (�)
�0 (�) d�

=

Z p

a

jCp (�)j d� :

Let us set s = � (p) ; where � (p) =
R p
a
jCp (�)j d� . Then � : J ! [0; l ()] ; where l ()

is the length of the curve , �0 (p) = jCp (�)j > 0: It follows that eC (s) = eC (� (p)) is a
reparametrization of : Furthermore, we have

eCs = Cp
dp

ds
=

Cp
jCpj

(1)

=
�!
T ;
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where
�!
T is the unit tangent vector to the curve  at the point C (p). This says that the

parametrization by arclength is such that the tangent vectors always have unit length.
For the next lemma we need to introduce two vector products in R2: the cross product

(or outer product) and the dot product (or inner product).

De�nition 3 Let x =
�
x1
x2

�
and y =

�
y1
y2

�
be two vectors in R2: The cross (or outer)

product of x and y is the scalar

x� y =
���� x1 y1
x2 y2

���� = x1y2 � x2y1:

The dot (or inner ) product is the scalar

hx;yi = x1y1 + x2y2:

Observe that jx� yj is the area of the parallelogram whose sides are the vectors x;y:
We have the following change of variable formula.

Lemma 4 Let  be a curve with parametrizations C; eC according to De�nition 1, then

eCq � eCqq = 1

�03
(Cp � Cpp) :

Proof. Writing C = eC � � and using the chain rule, we obtain
Cp = eCq � ��0;
Cpp = eCqq � ��02 + eCq � ��00:

Thus, observing that �0 > 0 and eCq � eCq = 0;
Cp � Cpp = �0 eCq � ��02 eCqq + �00 eCq�

= �03 eCq � eCqq:
Lemma 5 If eC is a parametrization of  by arclength, then

eCss = Cp � Cpp

jCpj3
�!
N ; (2)

where
�!
N is the unit normal vector obtained by rotating

�!
T through an angle of �

2
CCW.
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Proof. Di¤erentiating (1) once again with respect to s; we get

eCss =
d

dp

Cp
jCpj

dp

ds

=
1

jCpj
jCpjCpp � hCp;Cppi

jCpj Cp

jCpj2

=
Cpp � hCp;Cppi

jCpj2
Cp

jCpj2

=
Cpp �

D�!
T ;Cpp

E�!
T

jCpj2
:

Now, we observe that Cpp �
D�!
T ;Cpp

E�!
T is the component of Cpp in the direction normal

to
�!
T : This component can also written as jCppj sin �; where � is the angle from

�!
T to Cpp:

Observe that the sign of � agrees with the sign of
�!
T �Cpp (by the right hand rule for cross

products) and therefore sin � =
�!
T �Cpp
jCppj : Therefore,

Cpp �
D�!
T ;Cpp

E�!
T =

��!
T � Cpp

��!
N :

We get (2) upon writing
�!
T back as Cp

jCpj :

Since Cs is in the direction of
�!
T and Css is in the direction of

�!
N ; we always haveD eCs; eCssE = 0:

This can also obtained by di¤erentiating the equation��� eCs���2 = D eCs; eCsE = 1
with respect to s:

1.2 Rotations

In Lemma 5 we talked about rotating the unit vector
�!
T through an angle of �

2
CCW. This

rotation can be written algebraically as

�!
N = R

��
2

��!
T ;

where R (�) is the rotation operator through angle �

R (�) =

�
cos � � sin �
sin � cos �

�
:

A rotation operator has the following important properties:
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Lemma 6 Assume R (�) is the rotation operator through angle � then

1. R (�)� = R (�)�1 = R (��) ; here R (�)� is the transpose of R (�) :

2. R (�) preserves the inner product.

3. R (�) preserves norms.

As a consequence, R (�) preserves the angle between two vectors

Proof. The �rst property is an immediate consequence of the de�nition of R (�) : To prove
the second property, assume that x;y are two vectors in R2: Then

hR (�)x; R (�)yi = hR (�)�R (�)x;yi
=



R (�)�1R (�)x;y

�
= hx;yi :

To see the third property, assume x is a vector in R2: Then

jR (�)xj2 = hR (�)x; R (�)xi
= hx;xi = jxj2 :

1.3 The Curvature

The geometric curvature � at a point x0 on  is de�ned as the reciprocal of the radius of the
osculating circle at x0. This is found by passing a circle through x0 and two adjacent points
on , computing the radius of the circle and then taking the limit as the two adjacent points
tend to x0: This is equivalent to the formula

� =
ds

d�
; � =

1

�
;

where � is the angle between the tangent
�!
T and the positive x -direction.

Lemma 7 The following relationship holds

� =
Cp � Cpp

jCpj3
: (3)

Furthermore, � is independent of the parametrization of :
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Proof. We can write
�!
T =

�
cos �
sin �

�
:

Thus eCs = � cos �
sin �

�
and

eCss =

�
� sin �
cos �

�
d�

ds

= �
�!
N :

The formula (3) for � follows by comparing the above equation with (2).
To show that � is independent of the parametrization of  suppose that eC is a repara-

metrization of  according to De�nition 1. By Lemma 4,

Cp � Cpp

jCpj3
=
�03 eCq � eCqq����0 eCq���3 =

eCq � eCqq��� eCq���3 :

2 Invariant Signatures

We want to identify the di¤erential signatures of a curve . These are intrinsic properties of
the curve and are not a¤ected by the position or orientation of the curve. Such quantities
are useful for pattern recognition and object classi�cation under partial occlusion.

2.1 Euclidean Invariants

By Euclidean invariants we mean quantities that are invariant under rotation and translation.
If C is a parametrization of a curve , then C + x0 is a parametrization of its translation
by a vector x0 2 R2 and R (�0) (C � z0) + z0 is a parametrization of its rotation through an
angle �0 about a point z0 2 R2:

Proposition 8 The arclength and curvature are invariant under rotation and translation.

Proof. The arclength of a rotated curve C is given by

s =

Z p

a

���(R (�0) (C � z0) + z0)p��� d�
=

Z p

a

jR (�0)Cpj d�

=

Z p

a

jCpj d�:
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Thus the arclength is invariant under rotation. Similarly we can show that it is invariant
under translation. The invariance of � under translation can be seen from

� =
Cp � Cpp

jCpj3

since all quantities on the right involve di¤erentiation with respect to the parameter p: Its
invariance under rotation follows from the fact that the angle between Cp and Cpp as well as
their lengths are preserved under rotation of both vectors through an angle �0:
Thus, the reconstruction of � from � (using � = d�

ds
) involves and arbitrary initial rotation

�0. Similarly, the reconstruction of
�
x (s)
y (s)

�
from �; through the equation

d

ds

�
x (s)
y (s)

�
=
�!
T =

�
cos �
sin �

�
;

also involves an arbitrary initial vector
�
x0
y0

�
.

2.2 A¢ ne Invariants of Planer Curves

An a¢ ne transformation T : R2 ! R2 is given by

y = Tx = Ax+ b;

where A is a constant 2 � 2 matrix such that detA > 0 and b is a �xed vector in R2: If
detA = 1; the transformation preserves areas (show this). An a¢ ne transformation that
preserves areas is called equi-a¢ ne. The rotations and translations of previous subsection
are special cases of the equi-a¢ ne transformation.

Lemma 9 Let  be a curve parametrized by C : [a; b]! R2: The form Cp�Cpp is invariant
under equi-a¢ ne transformations.

Proof. Suppose Tx = Ax+ b is an equi-a¢ ne transformation. De�ne the parametrizationeC of T by eC (p) = TC (p) = AC (p) + b: We need to show that eCp � eCpp = Cp � Cpp: For
this we have eCp � eCpp = (AC + b)p � (AC + b)pp

= ACp � ACpp

= det ([ACp ACpp])

= det (A [Cp Cpp])

= detA det [Cp Cpp]

= Cp � Cpp:

The equi-a¢ ne arclength is a reparametrization eC (v) of  de�ned so that��� eCv � eCvv��� = 1: (4)
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Lemma 10 The reparametrization eC is such that

v = � (p) =

Z p

a

jCp (�)� Cpp (�)j1=3 d�: (5)

Proof. Using Lemma 4, we have

1 =
��� eCv � eCvv��� = 1

�03
jCp � Cppj :

Therefore,
�03 = jCp � Cppj :

Hence,

� (p) =

Z p

a

jCp (�)� Cpp (�)j1=3 d�:

Thus, the equi-a¢ ne arclength is given by

la (p) =

Z p

a

jCp (�)� Cpp (�)j1=3 d�:

One can easily show that the equation (4) is invariant under reparametrizations (verify).
Thus, if  is parametrized by arclength, then

v = � (s) =

Z s

0

jCs (�)� Css (�)j1=3 d�

Therefore,

�0 = jCs � Cssj1=3

=
����!T � �

�!
N
���1=3

= j�j1=3
����!T ��!N ���1=3

= j�j1=3 :

Thus, if C is a parametrization of  by the equi-a¢ ne arclength and eC is a parametrization
by arclength, then v = � (s) andC (v) = eC (s) = eC (� (s)) : Therefore,

Cv = eCs ds
dv
=
1

�0
eCs

= j�j�1=3�!T ;

which, together with the chain rule, give

Cvv = �1=3
�!
N � �s

3 j�j5=3
�!
T :
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Di¤erentiating (the square of) (4) gives

Cv � Cvvv = 0: (6)

This means that Cv; Cvvv are collinear:

Cvvv = ��Cv:

From the above equation we get

Cvv � Cvvv = ��Cvv � Cv

= ��

which means that is invariant under equi-a¢ ne transformations. � is called the a¢ ne cur-
vature. It is the simplest invariant of the curve :Also di¤erentiating (6) gives

Cv � Cvvvv + Cvv � Cvvv = 0

Cv � Cvvvv � �Cvv � Cv = 0

Cv � Cvvvv � � = 0

� = �Cvvvv � Cv:

3 Calculus of Variation in Parametric Form

Suppose we are given a function F : J�R2�R2 ! R (i.e., F = F (p;x;y) ; p 2 J;x;y 2 R2).
The problem of Calculus of variation (adapted to our settings) is the one of �nding a curve
 that immunizes the expression

J () =

Z p2

p1

F (p; C (p) ; Cp (p)) dp; (7)

where C is a parametrization of : A minimizing curve with a parametrization C (p) =�
x (p)
y (p)

�
satis�es the Euler-Lagrange equation

d

dp
Fy (p; C (p) ; Cp (p))� Fx (p; C (p) ; Cp (p)) = 0:

The following example should clarify this notation

Example Let
F (p;X;y) = p2

�
jxj2 + jyj2

�
with x =

�
x1
x2

�
;y =

�
y1
y2

�
2 R2: Then Fx (p;x;y) = rxF (p;x;y) = 2p2x and

Fy (p;x;y) = ryF (p;x;y) = 2p2y: Setting x = C;y = Cp and substituting in the
Euler-Lagrange equation, we obtain

d

dp

�
2p2Cp

�
� 2p2C = 0
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which reduces to the second order system

pCpp + 2Cp = pC:

Observe that this is a system of two equations that can be solved separately for each
component.

Exercise Repeat the above example for F (p;x;y) = e�phx;yi:

Naturally, we require that the expression J () to be independent of the parametrization
of . Let�s examine what class of functions F will satisfy this requirement. For this purpose,
assume C and eC are parametrizations of  according to De�nition 1. Then the required
independence of parametrization meansZ p2

p1

F (p; C (p) ; Cp (p)) dp =

Z q2

q1

F
�
q; eC (q) ; eCq (q)� dq

=

Z p2

p1

F

�
� (p) ; C (p) ;

1

�0 (p)
Cp (p)

�
�0 (p) dp:

Therefore, we must have

F (p; C (p) ; Cp (p)) = F

�
� (p) ; C (p) ;

1

�0 (p)
Cp (p)

�
�0 (p) :

In the case q = � (p) = p+ c; we get

F (p+ c; C (p) ; Cp (p)) = F (p; C (p) ; Cp (p)) :

which means that F must be independent of p; and in the case and q = � (p) = cp; we get

F

�
C (p) ;

1

c
Cp (p)

�
c = F (C (p) ; Cp (p)) ;

which implies that
F (C (p) ; cCp (p)) = cF (C (p) ; Cp (p)) :

for all positive numbers c: That is to say, F must also be positive homogenous with respect
to its second argument. For convenience, we will write the above equation and the Euler-
Lagrange equation as

F (x; cx0) = cF (x;x0) (8)
d

dp
Fy (x;x

0) = Fx (x;x
0) : (9)

Lemma 11 For the functional (7) to be independent of the parametrization, F must be
independent of p and we must have

Fyy (x;x
0)x0 = 0: (10)

Here Fyy is the matrix

Fyy =

�
Fy1y1 Fy1y2
Fy2y1 Fy2y2

�
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Proof. We have already seen that F must be independent of p: To show (10) di¤erentiate
equation (8) with respect to c and set c = 1 to get

Fyx
0 = F: (11)

Di¤erentiate once again with respect to x0 to get

Fyyx
0 + Fy = Fy

or
Fyyx

0 = 0:

Theorem 12 The curve  that minimizes the functional (7) satis�es the equation

Fyy (x;x
0)x00 = 0: (12)

and � is the curvature.

Proof. The Euler-Lagrange equation (9) may be rewritten as

Fyxx
0 + Fyyx

00 = Fx:

To eliminate Fx; we di¤erentiate both sides of equation (11) with respect to x: This yields

Fyxx
0 = Fx:

Substituting in the previous equation and simplifying, we get

Fyyx
00 = 0:

Exapmle Let�s verify that the shortest curve between two points Q1; Q2 in R2 is the straight
line. For this we need to minimize the expression for the Euclidean arclength of a curve.
That is

J () =

Z b

a

jCpj d�:

Therefore, F (x;x0) = jx0j ; or F (x;y) = F (y) = jyj ; for which

Fyy (x
0) =

1

jx0j3
�

x022 �x01x02
�x01x02 x021

�
;

where we wrote

x0 =

�
x01
x02

�
:

Observe that

Fyy (x
0)x0 =

1

jx0j3
�

x022 �x01x02
�x01x02 x021

��
x01
x02

�
= 0:
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The Euler-Lagrange equation (12) gives

1

jx0j3
�

x022 �x01x02
�x01x02 x021

��
x001
x002

�
=

1

jx0j3
�
�x01x02x002 + x001x

02
2

�x01x02x001 + x002x
02
1

�
= 0:

The �rst equation in the above system can be simpli�ed as follows

1

jx0j3
x02 (x

0
1x
00
2 � x001x

0
2) = 0

x02� = 0:

Similarly,
x01� = 0:

Since x01 and x
0
2 cannot be zero simultaneously, we must have

� = 0:

Then
Css = �

�!
N = 0:

Therefore,
C (s) = P0s+ P1; P0; P1 2 R2;

which is a parametrization of a straight line.

Exercise Repeat the above example for the equi-a¢ ne arclength

J () =

Z b

a

jCp � Cppj1=3 d�:

4 Surfaces in R3

A surface is intuitively thought of as composed of a �nite number of pieces, called surface
patches, each of which being locally like R2: Examples of surfaces are sheets, surfaces of
spheres, doughnuts,... etc. A surface is also termed a 2-manifold. We begin by de�ning
regular transformations.

De�nition 13 Suppose U is an open subset of R2: A regular transformation � : U ! R3
has the following properties.

1. � is of class C1 (i.e., �0 is continuous).

2. � is univalent (i.e., 1:1).

3. For any u 2 U; �0 (u) has rank 2.

De�nition 14 A subset M of R3 is called a regular surface patch in R3 if there is an open
subset U of R2 and a regular transformation � : U ! R3 such that � (U) = M: We will call
� a parametrization of M .
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Example Let M = f(x; y; z) 2 R3 : z2 = x2 + y2; z > 0g ( M is the upper half of a cone
with axis along the z-axis), U = f(u; v) 2 R2 : u > 0; 0 < v < 2�g and � : U ! M be
the transformation

� (u; v) =

0@ u cos v
u sin v
u

1A :

Then

�0 (u; v) =

0@ cos v �u sin v
sin v u cos v
1 0

1A :

It is straightforward to verify that � is a regular transformation and that � (U) =M:

A regular curve in R3 is parametrized by a mapping  : J = [a; b] ! R3 such that
 2 C1 (J) ;  is univalent and 0 (t) 6= 0 for all t 2 J: Suppose M is a regular surface patch
in R3 parametrized by � : U !M: Any curve on M has a parametrization of the form

 (t) = � (u (t))

= � (u (t) ; v (t)) ; t 2 J

for some interval J; where u (t) = (u (t) ; v (t)) : J ! U is a regular curve in U: Observe that
0 (t) = �uu

0 + �vv
0 = �0u0 and since �0 has rank 2 and u0 6= 0; 0 (t) 6= 0 for all t 2 J: Also

 is univalent and C1:

De�nition 15 Let M be a regular surface patch in R3 parametrized by � : U ! M and
let x0 2 M be such that � (u0) = x0: A vector h 2 R3 is called a tangent vector to M
at x0 if there is a regular curve  (t) = � (u (t) ; v (t)) : J ! M passing through x0 (i.e.,
 (t0) = � (u0) = x0) such that 0 (t0) = h: The set of all tangent vectors to M at x0 is called
the tangent plane at x0 and is denoted by TM (x0) :

Proposition 16 Let M be a regular surface patch in R3 parametrized by � : U ! M with
� : u0 2 U ! x0 2M: Then �0 (u0) spans TM (x0) :

Proof. Let h 2TM (x0) ; by de�nintion, there is a regular curve  (t) = � (u (t) ; v (t)) : J !
M , with  (t0) = � (u0) = x0 such that 0 (t0) = h: Therefore,

h = 0 (t0) = �u (u0)u
0 (t0) + �v (u0) v

0 (t0)

= �0 (u0)u
0 (t0) :

Therefore, h is a linear combination of the columns of �0 (u0) : On the other hand, let h1 =
�0 (u0) e1 = �u (u0) and h2 = �0 (u0) e2 = �v (u0) : Since �0 (u0) has rank 2, h1;h2 are linearly
independent. We will show now that h1;h2 2 TM (x0) :Since U is open and u0 2 U; there
is an r > 0 such that B (u0; r) � U: It follows that the line "curve" (u0 � re1;u0 + re1) �
B (u0; r) � U: De�ne the function u : (�r; r)! U by

u (t) = u0 + te1

14



and the curve  on M by

 (t) = � (u (t))

= � (u0 + te1) :

Then

 (0) = � (u0) = x0;

0 (t) = �0 (u0 + te1) e1;

0 (0) = �0 (u0) e1 = h1:

Therefore, h1 2 TM (x0) : Similarly we can show that h2 2 TM (x0) :

Corollary 17 TM (x0) is the image of R2 under the linear transformation k 2R2 :! �0 (u0)k 2R3:

Proof. Let k 2R2 and write k = �e1+�e2: Then �0 (u0)k =��0 (u0) e1+��0 (u0) e2 = �h1
+�h2 2 TM (x0) : On the other hand, for any h 2TM (x0) we can write h = �h1 + �h2 since
�0 (u0) spans TM (x0) : Therefore,

h = ��0 (u0) e1 + ��0 (u0) e2

= �0 (u0) (�e1 + �e2)

= �0 (u0)k;

where k =(�e1 + �e2) :
We turn next to considering integrals on surfaces and the computation of surface area.

LetM be a regular surface patch in R3 parametrized by � : U !M . Let A = � (B) ; where
B � U is measurable (i.e., has a �nite area). Then the area of A is de�ned by

V2 (A) =

Z
B

I (� (u)) dV2 (u) ;

where
I (� (u)) = j�u (u)� �v (u)j

and dV2 (u) is either dudv or dvdu depending on the order of integration.

Example For the previous example,

I (� (u; v)) =

������
24 cos vsin v

1

35�
24 �u sin vu cos v

0

35������ =
������
24 �u cos v�u sin v

u

35������
=

p
u2 cos2 v + u2 sin2 v + u2 =

p
2u:

Take B = f(u; v) 2 R2 : a < u < b; 0 < v < �g : Then A = � (B) is the portion of the
cone z2 = x2 + y2 between the planes z = a and z = b for which y > 0: We have

V2 (A) =

Z �

0

Z b

a

p
2u dudv

=
�p
2

�
b2 � a2

�
:
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In analogy with curves in R2; we discuss the idea of a reparametrization of a surface
patch M: Let � : U ! R2 be a regular transformation of class C1 (i.e., � satis�es all the
conditions of De�nition 13 with � replaced by � and R3 replaced by R2). We will call � a
regular �at transformation.

De�nition 18 Let � : U ! R2 be a regular �at transformation and set eU = � (U) : Suppose
M is a regular surface patch in R3 parametrized by �: The (regular) transformation e� : eU !
M de�ned by

� (u) = e� � � (u) = e� (v) ;
where u =(u; v) stands for a variable in U and v =(r; s) stands for a variable in eU , that is
v =� (u), will be called a reparametrization of M:

Before proving a "reparametrization" formula for surfaces we need the following lemma.

Lemma 19 Let A : R2 ! R3 be a linear transformation and write A = [a1 a2] ; where a1; a2
are the columns of A: For any vectors x;y 2 R2;

Ax�Ay =(a1 � a2) (x� y) :

Proof. Write x =
�
x1
x2

�
;y =

�
y1
y2

�
: Then Ax =x1a1 + x2a2 and Ay =y1a1 + y2a2:

Ax�Ay = (x1a1 + x2a2)� (y1a1 + y2a2)

= x1y2 (a1 � a2) + x2y1 (a2 � a1)
= (x1y2 � x2y1) (a1 � a2)
= (a1 � a2) (x� y) :

Proposition 20 Let M be a regular surface patch in R3: Let �; e� be parametrizations of M
according to de�nition 18. Then

I (� (u)) = I (e� (v)) jJ� (u)j ;
where

J� (u) = det�0 (u) :

Proof. Since � (u) = e� � � (u) = e� (v) ;
�u (u) = e�v � � (u)�0 (u)

= e�v (v)�0 (u) :
In otherwords, we have

�u (u) = e�v (v)�u (u) ;
�v (u) = e�v (v)�v (u) :

16



Observe also that e�v = [e�r e�s] : Now, using Lemma 19,
I (� (u)) = j�u (u)� �v (u)j

= j e�v�u � e�v�vj
= je�r � e�sj j�u � �vj
= I (e� (� (u))) jJ� (u)j
= I (e� (v)) jJ� (u)j :

We next de�ne what we mean by integrating a function f over a regular surface patch in
R3:

De�nition 21 Let M be a regular surface patch in R3, A � M be of �nite area and f :
A! R be continuous. The integral of f over A is de�ned byZ

A

f (x) dV2 (x) =

Z
B

f (� (u)) I (� (u)) dV2 (u) ;

where A = � (B) ; provided that (f � �) I (�) is integrable over B:

We also recall the following change of variable formula from advanced calculus. Suppose
U; eU are subsets of R2 and � : U ! eU is a �at reguar transformation. Let B � U; eB � eU be
such that eB = � (B) : If g : B ! R is an integrable function, thenZ

eB g (v) dV2 (v) =
Z
B

g (� (u)) jJ� (u)j dV2 (u) :

The following corollary states that the integral of a function f over a surface is indepen-
dent of the parametrization of the surface.

Corollary 22 SupposeM is a regular surface patch in R3 parametrized by � and e� according
to de�nition 18. Suppose further that B � U has �nite measure and eB = � (B) : ThenZ

A

f (x) dV2 (x) =

Z
eB f (e� (v)) I (e� (v)) dV2 (v)

=

Z
B

f (e� (� (u))) I (e� (� (u))) jJ� (u)j dV2 (u)
=

Z
B

f (� (u)) I (� (u)) dV2 (u) ;

where A = � (B) = e� � eB� :
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4.1 The �rst fundamental form and Geodesic distance

Let M be a regular surface patch in R3 parametrized by � : U ! M . Suppose  (t) =
� (u (t) ; v (t)) ; t 2 J = [a; b] is a regular curve on M: The arclength of  is de�ned by

l () =

Z b

a

j0 (t)j dt

=

Z b

a

j�uu0 + �vv
0j dt:

Example For the example of the conic surface, let u : J =
�
�
4
; �
2

�
! U be given by

u (t) = (u (t) ; v (t)) = (t; t) and let

 (t) = � (u (t) ; v (t))

= � (t; t)

=

24 t cos t
t sin t
t

35 :
Then

l () =

Z �
2

�
4

p
2tdt =

3
p
2

32
�2:

Observe that the endpoints of  are 
�
�
4

�
=

0@ p
2�=8p
2�=8
�=4

1A and 
�
�
2

�
=

0@ 0
�=2
�=2

1A :

Let�s formally write

ds2 = j�uu0 + �vv
0j2 dt2

= h�uu0 + �vv
0; �uu

0 + �vv
0i dt2

=
�
j�uj2 u02 + 2 h�u; �viu0v0 + j�vj2 v02

�
dt2

= j�uj2 du2 + 2 h�u; �vi dudv + j�vj2 dv2

= Edu2 + 2Fdudv +Gdv2;

where E = j�uj2 ; F = h�u; �vi and G = j�vj2 : The above equation is a formal de�nition,
which is used (as far as we are concerned) to keep track of the quantities E;F;G:

De�nition 23 The expression

Edu2 + 2Fdudv +Gdv2

is called the �rst fundamental form of M:
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Suppose h1;h2 2 TM (x0) then h1;h2 are linear combinations of �u (x0) ; �v (x0) : Hence
we can write

h1 = �1�u + �1�v;

h2 = �2�u + �2�v:

It is easy to check that

hh1;h2i = E�1�2 + F (�1�2 + �1�2) +G�1�2
= T t1FIT2;

where

FI =

�
E F
F G

�
;

T1 =

�
�1
�1

�
; T2 =

�
�2
�2

�
:

In particular, if h1 = h2 = h = a unit vector, then

T tFIT = 1

and if h1;h2 are orthogonal, then
T t1FIT2 = 0:

Now suppose that h1;h2 2 TM (x0) are two orthonormal vectors and let

A = [T1 T2] ;

then

AtFIA =
�
T t1FIT1 T t1FIT2
T t2FIT1 T t2FIT2

�
= I2:

De�nition 24 For x;y 2M; the geodesic distance d (x;y) is de�ned by

d (x;y) = inf fl () :  is a curve on M with endpoints x and yg :

4.2 The Second Fundamental Form and Surface Curvatures

Suppose  is a curve on a regular surface patch M in R3 parametrized by �: Then

0 = �uu
0 + �vv

0

and
00 = �uuu

02 + 2�uvu
0v0 + �vvv

02 + a tangent component.

In particular, if
�!
N is the unit vector normal to the surface M at x thenD

00;
�!
N
E
= Lu02 + 2Mu0v0 +Nv02; (13)

where
L =

D
�uu;

�!
N
E
; M =

D
�uv;

�!
N
E
; N =

D
�vv;

�!
N
E

19



De�nition 25 The expression

Ldu2 + 2Mdudv +Ndv2

is called the second fundamental form of M:

In analogy with the �rst fundamental form, we associate the matrix

FII =
�
L M
M N

�
with the second fundamental form.
Suppose that  is a curve on M parametrized by arclength so that 0 is a unit vector.

As we saw before, 00 is orthogonal to 0: Therefore, 00 is parallel to the plane � orthogonal
to 0: An orthonormal basis for � can be taken as the unit normal

�!
N and

�!
N �0: Hence, 00

is a linear combination of
�!
N and

�!
N �0

00 = �n
�!
N + �g

�!
N � 0:

�n and �g are called the normal curvature and the geodesic curvature of , respectively. It
follows that

�2 = j00j2 = �2n + �2g; (14)

where � is the unsigned curvature of :
Denoting by n the unit vector in the directionof 00; we have

00 = �n:

Therefore,
�n =�n

�!
N + �g

�!
N � 0

and if we take the inner product on both sides with
�!
N we get

�n = �
D
n;
�!
N
E
= � cos ; (15)

where  is the angle between n;
�!
N : From (14) we get that

�g = �� sin :

This means that �n is always well de�ned and �g is well de�ned up to a sign. Returning
back to equation (15), we get, using also equation (13)

�n = �
D
n;
�!
N
E
=
D
�n;
�!
N
E

=
D
 00;
�!
N
E
= Lu02 + 2Mu0v0 +Nv02:
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De�nition 26 The principal curvatures of a surface patch are the roots of the equation

det (FII � �FI) ;

i.e. the solutions of ���� L� �E M � �F
M � �F N � �G

���� = 0:
The principal curvatures �1 and �2 are also known as the generalised eigenvalues of the

matrix FII relative to the matrix FI :We will see in Proposition 27 that �1 and �2 are always
real. Suppose that T =

�
�
�

�
is a generalised eigenvector, that is, a solution of

(FII � �FI)T = 0:

The corresponding tangent vector, h = �0T = ��u+��v to the surfaceM is called a principal
vector corresponding to the principal curvature �:

Proposition 27 Let �1 and �2 be the principal curvatures at a point x of a survace patch

M parametrized by �: Then

1. �1 and �2 are real.

2. If �1 = �2 = �; say, then FII = �FI and (hence) every tangent vector to M at x is a

principal vector.

3. If �1 6= �2 then any two (nonzero) principal vectors h1 and h2 corresponding to �1 and

�2; respectively, are orthogonal.

Proof. We prove only the �rst part of this proposition, leaving the other two parts as
exercises. Let h1 = �0T1 and h2 = �0T2 be any two orthonormal tangent vectors to M
at x: Since �0 has rank 2, T1 and T2 are linearly independent. Consequently, the matrix
A = [T1 T2] has a nonzero determinant. We saw previously that AtFIA = I2: Therefore,

det (FII � �FI) =
1

(detA)2
detAt det (FII � �FI) detA

=
1

(detA)2
det

�
AtFIIA� �I2

�
:

Thus, the solutions of det (FII � �FI) = 0 are the eigenvalues of the matrix AtFIIA: These
eigenvalues are real since AtFIIA is symmetric.
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Corollary 28 (Euler�s Theorem) Let  be a curve on a surface patch M and let �1 and �2

be the principal curvatures with corresponding principal (nonzero) vectors h1and h2 then the
normal curvature of  is

�n = �1 cos
2 � + �2 sin

2 �

where � is the angle between 0 and h1:

Proof. (Exercise).

Corollary 29 The principal curvatures at a point of a surface are the maximum and mini-
mum valures of the normal curvature of all curves on the surface that pass through the point.
Moreover, the principal vectors are the tangent vectors of the curves that give these maximum
and minimum values.

Proof. (Exercise).
Curves  with the geodesic curvature �g = 0 are called geodesics. An important case is

when  is the intersection of the surface M with a plane � that is orthogonal to the tangent
plane of M at every point of : We can show that �g = 0 in this case.

De�nition 30 The Gaussian curvature is de�ned by

K = �1�2

and the mean curvature is de�ned by

H =
1

2
(�1 + �2) :

Observe that �1 and �2 are the roots of the quadratic equation

�2 � 2H�+K = 0:
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