
1 Curve and Surface Evolution

In this chapter we study the evolution of curves and surfaces. We begin with the curve
evolution.

1.1 Curve Evolution

An evolving curve can be thought of as a family of curves parametrized by time. This means
that each curve in the family is a mapping  : J � (0; T ] ! R2; that assigns for each space
parameter t 2 J and each time parameter � 2 (0; T ] a point  (t; �) 2 R2. An evolution
equation is a di¤erential equation that describes the evolution of  in time. For example,
the evolution equation

@

@�
=
�!
N (1)

describes a curve that is evolving with unit speed along its normal direction
�!
N : Another

example is the so called geometric heat equation

@

@�
= �

�!
N (2)

which describes a curve evolving along its normal direction with speed equal to its curvature.
The name geometric heat equation comes from writing the above equation as

@

@�
=
@2

@t2
;

where  is parametrized by arclength.
Consider a general evolution equation is of the form

@

@�
= V1 ( (�) ; �)

�!
N + V2 ( (�) ; �)

�!
T ; (3)

where Vi : R2 � (0; T ] ! R; i = 1; 2 is a real valued function. It should be intuitively
clear that the tangential component of the evolution equation has no e¤ect on the shape of
the curve and a¤ects only its parametrization. This intuition will be made precise by the
following lemma.

Lemma 1 There is a parametrization e of the curve  such that the evolution equation (3)
reduces to

@e
@�
= V1

�!
N : (4)

Proof. Let � : J � (0; T ]! I be a change of the space parameter, in other words, for each
� 2 (0; T ] ; � (�; �) is a reparametrization of  (�; �) as de�ned in the previous chapter. Let
s = � (t; �) and  (t; �) = e (s; �) : Then

@

@�
=
@e
@s

@s

@�
+
@e
@�
:
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Substituting in (3) we get

@e
@s

@s

@�
+
@e
@�

= V1
�!
N + V2

�!
T

= V1
�!
N + V2

es
jesj :

Rearranging, we get
@e
@�
= V1

�!
N +

�
V2
jesj � @s

@�

�
@e
@s
:

Thus, choosing s = � (t; �) to be any particular solution of the partial di¤erential equation

V2 �
@�

@�
jesj = 0

reduces equation (3) to (4).
The above lemma means that it is su¢ cient to consider only evolutions along the normal

direction to the curve  (�; �) :

1.1.1 Invariant Curve Evolutions

We discuss here evolution equations that are based on the invariant forms discussed in the
previous chapter. For example, the evolution equation for the Euclidean arclength is given
by

@

@�
=

�
@2

@s2
;
�!
N

�
�!
N

= �
�!
N

and for the equi-a¢ ne arclength by

@

@�
=

�
@2

@v2
;
�!
N

�
�!
N

= �1=3
�!
N :

Another invariant form, to be discussed now comes from the a¢ ne transformation with one
�xed point (also known as the linear a¢ ne transformation). This transformation has the
form

y = Tx = A (x� x0) + x0;
where detA = 1: The point x0 is �xed by this transformation and all vectors emanating
from x0 have images which also emanate from x0: We can easily show that the form  � 0
is invariant under this transformation. To obtain the associated invariant arclength, we �nd
a reparametrization e (w) such that

je � ewj = 1:
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Thus, with the usual change of variable w = � (t), we have

1 = je � ewj = 1

�0
j � tj :

Therefore,

w = � (t) =

Z t

a

j (�)� t (�)j d�:

It is easy to show that the above integral is invariant under reparametrization. Thus

w = � (s) =

Z s

0

j � sj d�

=

Z s

0

��� ��!T ��� d� = Z s

0

���D;�!NE��� d�:
Writing e (w) =  (s) we get

ew = s
ds

dw

=
1���D;�!NE���s = 1���D;�!NE����!T

and

eww = ss

�
ds

dw

�2
+ s

d2s

dw2

=
�D

;
�!
N
E2�!N + Tangential component.

Therefore, the evolution equation associated with this form is

e� = �D
;
�!
N
E2�!N :

This evolution equation is known as the linear a¢ ne heat equation. It becomes singular if 
is in the direction to the tangent to the curve : We will be interested only in cases where
this does not happen.

De�nition 2 A curve  is said to be a simple closed curve if for t1 6= t2;  (t1) =  (t2) ; if
and only if t1 = a and t2 = b: A simple closed curve  is said to be positively oriented if and
only if its unit normal

�!
N points into int() :

Proposition 3 If  is positively oriented simple closed curve then the area inside  is given
by

A =
1

2

Z b

a

 � td�: (5)
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1.1.2 Calculus of Curve Evolution

We study in what follows some di¤erential properties of curves evolving under a general
equation

@

@�
= V

�!
N : (6)

For ease of notation we will use (�)0 to indicate the partial derivative with tespect to space
parameter.

Lemma 4 For a general parametiization  we have

1. � = 1
j0j2

D
00;
�!
N
E

2.
�!
T 0 = 1

j0j2

D
00;
�!
N
E�!
N = � j0j �!N

3.
�!
N 0 = �� j0j �!T

Proof. (1):

� =
0 � 00

j0j3
=

1

j0j2
0

j0j � 
00

=
1

j0j2
�!
T � 00 = 1

j0j2
D
R
��
2

��!
T ; 00

E
=

1

j0j2
D�!
N ; 00

E
:

(2):

�!
T 0 =

�
0

j0j

�0
=
j0j 00 �

D
0

j0j ; 
00
E
0

j0j2

=
1

j0j

�
00 �

D�!
T ; 00

E�!
T
�

=
1

j0j

D
00;
�!
N
E�!
N = � j0j �!N :

(3):

�!
N 0 =

@

@t
R
��
2

��!
T = R

��
2

��!
T 0

= � j0jR
��
2

��!
N = �� j0j �!T

Next we give the time derivative of the various vectors associated with an evolving curve.
As ususal, we evolve the curve along its normal direction.
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Lemma 5 Suppose  is evolving under the general equation (6). Then

1. (j0j)� = �� j0jV

2.
�!
T � =

1
j0jV

0�!N

3.
�!
N � = � 1

j0jV
0�!T

4. (00)� =
�
V 00 � �2 j0j2

��!
N �

�
� j0jV 0 + (� j0jV )0

��!
T :

5. �� =
(V 00+�2j0j2V )� V

j0j2
h00;0i

j0j2 :

Proof. Using Lemma 4 we have
(1):

(j0j)� =

�
0

j0j ; (
0)�

�
=
D�!
T ; (� )

0
E

=

�
�!
T ;
�
V
�!
N
�0�

=
D�!
T ; V 0

�!
N + V

�!
N 0
E

=
D�!
T ; V

�!
N 0
E
=
D�!
T ;�� j0jV�!T

E
= �� j0jV:

(2):

�!
T � =

�
0

j0j

�
�

=
j0j (0)� � (j0j)� 0

j0j2

=
j0j

�
V
�!
N
�0
+ � j0jV 0

j0j2
=
V 0
�!
N + V

�!
N 0 + �V 0

j0j

=
V 0
�!
N � � j0jV�!T + �V 0

j0j =
1

j0jV
0�!N :

(3):

�!
N � =

�
R
��
2

��!
T
�
�

= R
��
2

��!
T �

=
1

j0jV
0R
��
2

��!
N

= � 1

j0jV
0�!T
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(4):

(00)� = (� )
00 =

�
V
�!
N
�00
=
�
V 0
�!
N + V

�!
N 0
�0

=
�
V 0
�!
N � � j0jV�!T

�0
= V 00

�!
N + V 0

�!
N 0 � (� j0jV )0�!T � � j0jV�!T 0

= V 00
�!
N � � j0jV 0�!T � (� j0jV )0�!T � �2 j0j2 V�!N

=
�
V 00 � �2 j0j2 V

��!
N �

�
� j0jV 0 + (� j0jV )0

��!
T :

(5):

�� =

0@
D
00;
�!
N
E

j0j2

1A
�

=
j0j2

�D
00� ;
�!
N
E
+
D
00;
�!
N �

E�
� (h0; 0i)�

D
00;
�!
N
E

j0j4

=
j0j2

��
V 00 � �2 j0j2 V

�
+
D
00;� 1

j0jV
0�!T
E�
� 2 h0; 0� i

D
00;
�!
N
E

j0j4

=
j0j2

��
V 00 � �2 j0j2 V

�
+
D
00;� 1

j0jV
0�!T
E�
� 2

D
0; V 0

�!
N + V

�!
N 0
ED
00;
�!
N
E

j0j4

=
j0j2

��
V 00 � �2 j0j2 V

�
+
D
00;� 1

j0jV
0�!T
E�
� 2

D
0;�� j0jV�!T

ED
00;
�!
N
E

j0j4

=
j0j2

��
V 00 � �2 j0j2 V

�
+
D
00;� 1

j0jV
0�!T
E�
+ 2�2 j0j4 V

j0j4

=

�
V 00 + �2 j0j2 V

�
� V 0

j0j2 h
00; 0i

j0j2

Corollary 6 If  is parametrized by arclength, then

1.
�!
T � = V

0�!N

2.
�!
N � = �V 0

�!
T

3. �� = V 00 + �2V:

We also recall that the Euclidean arclength is given by

L (�) =

Z b

a

j0j d�
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Lemma 7 Suppose  is a positively oriented simple closed curve evolving under the general
equation (6) then

1. L� = �
R L
0
�V ds

2. A� = �
R L
0
V ds;

where L = L (�) denotes the length of  at time � :

Proof. (1):

L� =

Z b

a

j0j� d� = �
Z b

a

�V j0j d�

= �
Z L

0

�V ds;

where we used a change of variable to parametrization by arclength.
(2): Using equation (5),

A� =
1

2

Z b

a

(� � 0 +  � 0� ) d�

=
1

2

Z b

a

� � 0d� +
1

2

Z b

a

 � 0�d�

=
1

2

Z b

a

� � 0d� +
1

2

�
 � � jba �

Z b

a

0 � �d�
�

=

Z b

a

� � 0d� �
1

2
 � � j

b
a

Now

 � � j
b
a =  � V�!N

���b
a

=  (b; �)� V ( (b; �) ; �)�!N ( (b; �))�  (a; �)� V ( (a; �) ; �)�!N ( (a; �)) :

Since  is a simple closed curve,  (b; �) =  (b; �) : Hence,  � � j
b
a = 0: Therefore,

A� =

Z b

a

� � 0d� =
Z b

a

V
�!
N � j0j �!T d�

= �
Z b

a

V j0j d� = �
Z L

0

V ds:

Example Suppose a curve  is evolving under the constant evolution equation (1) (i.e.,
V = 1) such that at � = 0,  (s; 0) is a circle of radius r . Note that the parametrization
of  (s; 0) by arclength  : [0; 2�r]! R2 takes the form

 (s; 0) =
�
r cos

�s
r

�
; r sin

�s
r

��
:
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From this we obtain

�!
T (s; 0) =

�
� sin

�s
r

�
; cos

�s
r

��
;

�!
N (s; 0) = R

��
2

��!
T (s; 0) =

�
0 �1
1 0

� �
� sin

�
s
r

�
cos
�
s
r

� �
=

�
� cos

�
s
r

�
� sin

�
s
r

� � = �1
r
 (s; 0) ;

� (s; 0) = s � ss =
�
� sin

�
s
r

�
cos
�
s
r

� �
�
�
�1
r
cos
�
s
r

�
�1
r
sin
�
s
r

� � = 1

r
:

The evolution of the normal vector is governed by the equation

�!
N � = �V 0

�!
T = 0:

Therefore, �!
N (s; �) = C (s) :

The constant is evaluated by putting � = 0; which gives

C (s) =
�!
N (s; 0) = �1

r
 (s; 0) :

The evolution of the curve  is governed by the equation

� =
�!
N (s; �) =

�!
N (s; 0) = �1

r
 (s; 0) :

Therefore,
 (s; �) = ��

r
 (s; 0) + C (s) :

At � = 0;
 (s; 0) = C (s) :

Thus

 (s; �) =  (s; 0)
�
1� �

r

�
=

�
r cos

�s
r

�
; r sin

�s
r

���
1� �

r

�
= :

�
r
�
1� �

r

�
cos
�s
r

�
; r
�
1� �

r

�
sin
�s
r

��
Thus,  (s; �) is a circle of radius r

�
1� �

r

�
= (r � �) : This means that the circle

collapses to a point at � = r:

The evolution of the curvature is governed by the equaiton

�� = V 00 + �2V

= �2:
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This equation has the solution

� (s; �) =
� (s; 0)

1� �� (s; 0)

=
1=r

1� �=r =
1

r � � :

As � ! r; �!1 (the curvature of a point).

The arclength evolution is governed by the di¤erential equation

L� = �
Z L

0

�V ds

= � 1

r � �

Z L

0

ds

= � 1

r � � L;

which has the solution
L (�) = 2� (r � �) :

Clearly L (r) = 0: The evolution of the area is governed by the di¤erential equation

A� = �
Z L

0

V ds

= �L = �2� (r � �) ;

which has the solution
A (�) = � (r � �)2 :

Again A (r) = 0:

Example Suppose  is a simple closed curve evolving under the curvature �ow (2) (i.e.,
V = �). The cahnge of curvature, length and area are goverened by the equations

�� = �ss + �
3;

L� = �
Z L

0

�2ds;

A� = �
Z L

0

�ds;

respectively. The change in area can be simpli�ed as follows

A� = �
Z L

0

d�

ds
ds = � [� (L)� � (0)] = �2�:

Hence,
A (�) = A (0)� 2��;

which means that the area will vanish after �nite time � = A (0) = (2�) :
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More information about curvature �ows is provided in the following theorem.

Theorem 8 (Gage-Hamilton) The curvature �ow shrinks a convex curve  to a point. 
becomes circular as it evolves in the sense that

1. the ratio of the radii of the inscribed circle to the circomscribed circle becomes,

2. the ration of the maximum curvature to the minimum curvature approaches 1, and

3. the higher order of the derivatives of the curvature converge uniformly to 0.

1.2 Surface Evolution

An example of surface evolution is
@�

@�
= H

�!
N ;

where H is the mean curvatues of the surface. This �ow is called the mean curvature �ow.
The steady state equation for this �ow is

H
�!
N = 0;

which is the Euler-Lagrange equation for the surface area

A (�) =

Z
j�u � �vj dV2 (u) :

The vanishing of the "�rst derivative" means that the corresponding surface � has minimum
area. Therefore, the mean curvature �ow aims at minimizing the surface area.
Another example of surface evolution is the equia¢ ne invariant �ow

@�

@�
= K1=4�!N ;

which is obtained in a similar way to the a¢ ne invariant �ow for curves.

1.2.1 Surfaces that are Graphs of Functions

The graph of a function I : U � R2 ! R of the two variables (x; y) 2 U is the subset of R3
de�ned by

� = f(x; y; I (x; y)) : (x; y) 2 Ug :
If the function I is smooth, then � can be considered as a surface in R3: A special case of
such functions is the intensity function of an image. In this case I (x; y) is the gray level of
the image corresponding to the point (x; y) :We are going to consider a mean curvature �ow
for such surfaces of the form

�� =
HD�!
N ;
�!
k
E�!k ; (7)
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where H is the mean curvature at any poin on the surface,
�!
N is the unit normal to the

surface and
�!
k is the unit vector in the positive z-direction:

�!
k = (0; 0; 1) : The unit normal�!

N is computed as follows

�!
N =

�x � �y
j�x � �yj

=
1

j�x � �yj

24 1
0
Ix

35�
24 0
1
Iy

35 = 1p
1 + I2x + I

2
y

24 �Ix�Iy
1

35 :
Therefore, D�!

N ;
�!
k
E
=

1p
1 + I2x + I

2
y

:

On the other hand

�� =

24 0
0
I�

35 :
Thus, equation (7) simpli�es to

I� = H
q
1 + I2x + I

2
y :

Furthermore,

H =
LG� 2MF +NE
2 (EG� F 2) ;

where E;F;G; L;M;N are the coe¤�cients of the �rst and second fundamental forms.
Observe that the above formula for H can be found by computing the trace of the matrix
F�1
I FII : For our case, E = j�xj

2 = (1 + I2x) ; F = h�x; �yi = IxIy; G = j�yj
2 =

�
1 + I2y

�
; L =D

�xx;
�!
N
E
= RIxx; M =

D
�xy;

�!
N
E
= RIxy and N =

D
�yy;

�!
N
E
= RIyy; whereR = 1p

1+I2x+I
2
y

Subsituting these values in the expression for H yeilds

H =
Ixx (1 + I

2
x)� 2IxyIxIy + Iyy

�
1 + I2y

��
1 + I2x + I

2
y

�3=2
and the expression for I� becomes

I� =
Ixx (1 + I

2
x)� 2IxyIxIy + Iyy

�
1 + I2y

�
1 + I2x + I

2
y

with the function itself as the initial condition I (x; y; 0) = I (x; y) :
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