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1 The One Dimensional Heat Equation

One of the simplest parabolic (or heat) equaions is the one dimensional problem

ut (x; t) = �uxx (x; t) ; t 2 (0; T ] ; x 2 (0; a) ; (1)

u(t; 0) = h1 (t) ; u(t; a) = h2 (t) ;

u (0; x) = f (x) :

Because values of the function u are speci�ed at the endpoints x = 0 and x = a of the
space intervale, we call this problem a Dirichlet problem. If values of the derivative ux are
speci�ed at the boundaries x = 0 and x = a , the problem is called a Neumann problem.
To approximate the solution of this equation, we construct a space-time grid. That

is, we divide the rectangle

R = f(x; t) : 0 � x � a; 0 � t � Tg

into a grid of n � 1 by m � 1 rectangles with sieds 4x = a=n and 4t = T=m: Starting
from the bottom row t = t1 = 0, the solution is

u (xi; t1) = f (xi) ; i = 1; 2; : : : ; n:

To approximate the solution at the next grid line, the di¤erential equation is approxi-
mated by a di¤erence equation as follows. The time derivatvie ut is approximated by the
di¤erence formula

ut (x; t) �
u (x; t+4t)� u (x; t)

4t
and the space derivative is approximated by

uxx (x; t) �
u (x+4x; t)� 2u (x; t) + u (x�4x; t)

4x2

We can show using Taylor series expansions that these approximations are of order 4t in
time and4x2 in space. Denoting by uij the approximate value of u (xi; yj) the di¤erential
equation (1) is approximated by the di¤erence equation

ui;j+1 � ui;j
4t = �

ui+1;j � 2ui;j + ui�1;j
4x2 :
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Substituting r = �4t=4x2 (for conventience) and solving for ui;j+1; we obtain

ui;j+1 = rui+1;j � (1� 2r)ui;j + rui�1;j: (2)

Example For the heat equation with f (x) = 4x�x2; h1 (x) = h2 (x) = 0; a = 1; r = :45,
the �gure below shows 10 timesteps of the evolution of the solution.

The initial solution decays towards zero with time as expected. Repeating the
calculation with r = :6 produces the results shown below

In this case the initial solution builds up twards in�nity. This is a typical case of
the instability of the numerical scheme used to approximate the solution. We can
show that the solution is stable if and only if r � :5:

The instability in the previous example can be predicted from mathematical analysis
by a method called Neumann stability method. The idea is to consider the solution of
the di¤erence equation as a superposition of Fourier basic functions (modes) and require
that none of the basic functions should blow up as time increases. In e¤ect, what this
means is that we substitute

uk;j = �
jei!k4x

in the di¤erence equation (2) and require that j�j � 1: When we carry out this idea, we
obtain

�j+1ei!k4x = r�jei!(k+1)4x + (1� 2r) �jei!k4x + r�jei!(k�1)4x;
which simpli�es to

� = 2r cos!4x+ (1� 2r) :
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The requirement j�j � 1 gives

�1 � 2r cos!4x+ (1� 2r) � 1
�1 � r (�1 + cos!4x) � 0:

The right half of this inequality is always satis�ed. The left half gives

r � 1

1� cos!4x:

Since this inequality must hold for all values of !4x; we must have

r � min
�

1

1� cos!4x

�
=
1

2
:

2 The Two Dimensional Heat Equation

The heat equation in a rectangle (two dimensional) has the form

ut (x; y; t) = � (uxx (x; y; t) + uyy (x; y; t)) ;

= �4u (x; y; t) t 2 (0; T ] ; x 2 (0; a) ; y 2 (0; b)
u(0; y; t) = h1 (y; t) ; u(a; y; t) = h2 (y; t) ;

u(x; 0; t) = g1 (x; t) ; u(x; b; t) = g2 (x; t) ;

u (0; x; y) = f (x; y) :
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Here, we assumed Dirichlet boundary conditions, but Neumann boundary conditions are
also possible (the Neumann boundary conditions are speci�ed in terms of the normal
derivative of u on the boundary of the rectangle).
To approximate the solution we divide the box

B = f(x; y; t) : 0 � x � a; 0 � y � b; 0 � t � Tg

into n � 1 � m � 1 � p � 1 cells of sides 4x = 4y = a=n = b=m (for convenience, we
assume that am = bn) and 4t = T=p: Following the same method of dicritization as for
the heat equation in one space dimension we arrive at the di¤erence equations

uj;k;i+1 = r (uj+1;k;i + uj�1;k;i + uj;k+1;i + uj;k�1;i) + (1� 4r)uj;k;i;

where uj;k;i � u (xj; yk; ti) ; r = �4t=4x2:

Example We apply the heat equation in two space dimensions to evolve the image
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The image dimensions are 200 by 320. We then can take 4x = 4y = 1; � = 1; r =
:25; so that 4t = :25: The boundary conditions are taken as 1 (white color) on the
boundary of the image. After 240 time steps the image evolves into the shape shown
below.
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After 1280 time steps, the image takes the form shown below.
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If we increase r to 0:3 and run for 4 time steps, we get the image
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Running further, we get the image
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The entries in the pixel coloring run into the range of 107: So, again, this is an
unstable case. The stability condition in this case is r � 0:25:

3 Hyperbolic Equations

The one dimensional advection equation (also called the transport or wave equation)

@u

@t
(x; t) + a

@u

@x
(x; t) = 0; t > 0; x 2 R;

u (x; 0) = u0 (x) ;
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where a is a constant is a standard example of hyperbolic problems. It can be easily
veri�ed that the solution is

u (x; t) = u0 (x� at) :
It follows that, on the lines x� at = c; u (x; t) = u0 (c) is constant. These lines are called
characteristics. Information is propagated in the direction of the sign of a; for example,
from left to right if a is positive. The discretizaion of this equation is done as follows.
The time discretization is

ut (xk; tj) �
uk;j+1 � uk;j

4t :

For discretization in space, we have two possibilities

ux (xk; tj) �
uk+1;j � uk;j

4x (forward di¤erence)

or
ux (xk; tj) �

uk;j � uk;j�1
4x (backword di¤erence).

Consequently, we have one of the following di¤erence equatoins

uk;j+1 = uk;j � �
�
uk+1;j � uk;j
uk;j � uk;j�1

; (3)

where

� = a
4t
4x:

3.1 The CFL Condition

Let�s apply the Von Neumann stability method for both possibilities. We substitute

uk;j = �
jei!k4x

in the di¤erence scheme (3) to get

� = 1� �
�
ei!4x � 1
1� e�i!4x :

If a > 0; and we use forward di¤erence in space, then

� = 1� �
�
ei!4x � 1

�
= 1 + �� �ei!4x

= 1 + �� � cos (!4x)� i� sin (!4x) :

Therefore,

j�j2 = (1 + �� � cos (!4x))2 + �2 sin2 (!4x)
= 1 + 2�� 2� cos!4x+ 2�2 � 2�2 cos!4x
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and the condition j�j2 � 1 gives

(1 + �) (1� cos!4x) � 0;

which cannot be satis�ed for all !4x: Hence, a forward di¤erence in space produces an
unstable scheme.
If a > 0; and we use backword di¤erence in space, then

� = 1� �+ � cos (!4x)� i� sin (!4x)

and

j�j2 = (1� �+ � cos (!4x))2 + �2 sin2 (!4x)
= 1� 2�+ 2� cos!4x+ 2�2 � 2�2 cos!4x:

The condition j�j2 � 1 gives

� (1� cos!4x) � 1� cos!4x;

or
� � 1:

Thus, the scheme will be stable if we use backword di¤erence in space and restrict � such
that

� = a
4t
4x � 1:

Similar considerations for the case a < 0 reveal that we must use forward di¤erence in
space and restrict � such that

�� = �a4t4x � 1:

In summary, the di¤erence scheme takes the form

uk;j+1 = uk;j � �
�
uk+1;j � uk;j if a > 0
uk;j � uk;j�1 if a < 0

and the stability condition is

jaj 4t4x � 1: (4)

These schemes are called upwind schemes because they conform with the slope 1
a
of the

characteristics. The stability condition (4) is known as the CFL condition in reference to
the authors Courant-Friedrichs-Lewy. It states that the numderical velocity (or slope) 4t

4x
must be less that or equal to the continuous velocity dt

dx
= 1

a
:
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3.2 Hyperbolic Equations and Shocks

Let�s consider the equation

@u

@t
(x; t) + a (x)

@u

@x
(x; t) = 0; t > 0; x 2 R;

u (x; 0) = u0 (x) ;

where

a (x) =

�
1; x < 0
�1; x > 0:

In this case, the solution is

u (x; t) =

�
u0 (x� t) ; x� t < 0
u0 (x+ t) ; x+ t > 0:

:

In other words the initial value u0 (x0) propagates along the characterisitics x+ t = x0 if
x0 > 0 and along the the characterisitics x� t = x0 if x0 < 0: The two characteristics are
shown below. Now, consider what happens at the point (0; x0) : The solution propagated
from the point x = x0 reaches (0; x0) at t = x0: Thus u (0+; x0) = u0 (x0) : On the other
haned, the solution propagated from the point x = �x0 reaches (0; x0) at t = �x0: Thus
u (0�; x0) = u0 (�x0) : If u0 (x0) 6= u0 (�x0) a shock develops at the point (0; x0) : This
means that u (0; x0)

becomes unde�ned and it is not clear how to propagate the solution beyond this instant.
From the numerical solution point of view, the numerical scheme must be di¤erent on

either side of 0: We must use both forward and backword di¤erence schemes at the same
time. This is accomplished by the di¤erence equation

uk;j+1 = uk;j � (min f�; 0g (uk+1;j � uk;j) + max f�; 0g (uk;j � uk;j�1))

= uk;j �
�
�

2
(uk+1;j � uk;j�1)�

j�j
2
(uk+1;j � 2uk;j + uk;j�1)

�
:

9



Observe that the last term in this equation resembles the discretization of a second deriva-
tive in space. It turns out that the above di¤erence scheme approximates the "parapolic"
equation

ut = �aux + �uxx;
where � = 4x: The e¤ect is adding the smoothing properties of parabolic equations and,
consequently, no numerical shocks develop under this scheme. Of course, the numerical
soluion is meaningless as a classical solution of the hyperbolic equation beyond the shock
points. This kind of solution is called a viscosity solution and will be discussed in the
next section.
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