Calculus of Variations
MATH 640

Lecture Notes

Dr. Mohamed El-Gebeily

Contents

1 Lecture 1 2
2 Lecture 2 4
3 Lecture 3 6
4 Lecture 4 8
5 Lecture 5 9
6 Lecture 6 11
7 Lecture 7 12
8 Lecture 8 15
$9 \quad$ Lecture 9 17
10 Lecture 10 19
11 Lecture 11 21
12 Lecture 12 24
13 Lecture 13 26
14 Lecture 14 28
15 Lecture 15 31
16 Lecture 16 34
17 Lecture 17 36
18 Lecture 18 38
19 Lecture 19 40
20 Lecture 20 42
21 Lecture 21 45
22 Lecture 22 46
23 Lecture 23 49
24 Lecture 24 51
25 Lecture 25 54
26 Lecture 26 57
27 Lecture 27 59
28 Lecture 28 61
29 Lecture 29 65

1 Lecture 1

Convex Sets and their separation

Let V be a vector space, $u, v \in V$. Then

- The line segment between u and v is $[u, v]=\{\lambda u+(1-\lambda) v: \lambda \in[0,1]\}$.
- $A \subseteq V$ is convex iff $A=\left\{\sum_{i=1}^{n} \lambda_{i} u_{i}: \sum_{i=1}^{n} \lambda_{i}=1, \lambda_{i} \geq 0, u_{i} \in A\right\}$.
- ϕ is convex.
- $A \subseteq V, \operatorname{co}(A)=$ convex hull of $A=$ smallest convex set containing $A=\left\{\sum_{i=1}^{n} \lambda_{i} u_{i}: \sum_{i=1}^{n} \lambda_{i}=1, \lambda_{i} \geq\right.$ $\left.0, u_{i} \in A\right\}$
- V^{\prime} denotes the set of linear functional on V.
- A hyperplane $H \subseteq V$ is defined by $H=\left\{u \in V: l(u)=\alpha\right.$ for some $\left.l \in V^{\prime}, \alpha \in \mathbb{R}\right\}$. If $l(u)=\alpha$ is replaced by $l(u)<\alpha$ or $l(u)>\alpha(l(u) \geq \alpha$ or $l(u) \leq \alpha)$, then we have open (closed) half spaces.

Separation of convex sets

Let V be a topological vector space (tvs) over the reals, $u, v \in V, \alpha \in \mathbb{R}$. Here, we have $(u, v) \longrightarrow u+$ $v,(u, \alpha) \longrightarrow \alpha v$ are continuous. V is called locally convex space (lcs) ${ }^{1}$ if it has a fundamental sysytem of neighborhoods of zero consisiting of convex sets.

- If $A \subseteq V$ is convex, then so are $\stackrel{\circ}{A}, \bar{A}$.
- If $u \in \stackrel{\circ}{A}, v \in \bar{A}$, then $[u, v] \subseteq \AA$ and $\bar{\circ}=\bar{A}$.

DEfinition 1

- (Internal Points) A is convex, a point $u \in A$ is called an internal point of A if every line passing through u intersects A in two distinct points u_{1} and u_{2} such that $u \in\left(u_{1}, u_{2}\right)$.
- Every interior point is internal.
- If $\stackrel{\circ}{A} \neq \phi$, then every internal point to A is interior.
- $A \subseteq V, \overline{c o}(A)=$ closed convex hull of $A=$ intersection of all closed convex sets containing A.
- In a locally convex space (lcs), a hyperplane H is closed iff its representing functional is continuous.

DEfinition 2

(Separation of sets by hyperplanes) $A, B \subseteq V$. A hyperplane H is said to (strictly) separates A and B if each one of them is contained in one of the (open) half spaces determined by H.

THEOREM 3 (Hahm-Banach theorem) V is a vs, M is an affine set of $V, \phi \neq A \subseteq V$ convex , there exits a hyperplane H such that $M \subseteq H$ and $A \cap H \neq \phi$.

Corollary 4

- If $\phi \neq A \subseteq V$ is open and convex, $\phi \neq B \subseteq V$ is convex. Then there exists a hyperplane that separates A and B.

Corollary 5

- C (convex),$B \subseteq V$ (lcs), $C \cap B=\phi, C \neq \phi B \neq \phi$ and B is compact. Then there exists a hyperplane H which strictly separates A and B.

DEFINITION 6

(Supporting hyperplanes) $A \subseteq V, u \in A$. If there exists H such that A lies on one side of H and $u \in H$, then u is called a supporting hyperplane of A at u and u is called the supporting point.

[^0]
Corollary 7

- If $A \subseteq V$ (tvs), $A \neq \phi$ is convex. Then every point in the boundary of A is a supporting point.

Corollary 8

- If V (lcs), $M \subseteq V$ is closed and convex. Then M is the intersection of all closed hyperlanes containing it. boundary of A is a supporting point.
$\sigma\left(V, V^{\prime}\right)$ is called the weakest topology. V is a T_{2} locally convex space in this topology. $\sigma\left(V, V^{\prime}\right)$ is the weakest topology in which V is T_{2} locally convex. In a locally convex space, every closed convex set is also weakly closed.

2 Lecture 2

Convex Functions:

Definition:(convex function)
Let V be a real vector space, and let $A \subseteq V$ be convex. Then $F: A \rightarrow \bar{R}=[-\infty, \infty]$, is said to be convex iff $\forall \lambda \in[0,1], u, v \in A, F(\lambda u+(1-\lambda) v) \leq \lambda F(u)+(1-\lambda) F(v)$
whenever the r.h.s. is defined.
Definition:(effective domain)
The effective domain of F is defined as $\operatorname{dom} F=\{u \in A: F(u)<\infty\}$
Definition:(Indicator function)
If $A \subseteq V$, then $\chi_{A}(u)=\left\{\begin{array}{ccc}0 & \text { if } & u \in A \\ \infty & \text { if } u \notin A\end{array}\right.$ is called the indicator function of a set A.
Definition:(Extension function)
If F is defined on $A \subseteq V \rightarrow R$, then $\widetilde{F}: V \rightarrow \bar{R}$ which is given by

$$
\widetilde{F}=\left\{\begin{array}{ll}
F(u) \\
& \text { if } u \in A \\
\text { if } u \notin A
\end{array} \text { is an extension of } \mathrm{F} \text { on } \bar{R}\right.
$$

Exercises:

i) Prove that if F is convex, then $S_{a}=\{u \in A: F(u) \leq a\}$ and $S_{\bar{a}}=\{u \in A: F(u)<\bar{a}\}$ are convex, where $a \in R$.
ii) Prove that if F is convex, then $\operatorname{dom} F$ is too.
iii) Prove that if F is convex, then \widetilde{F} is too.
iv) Theorem χ_{A} is convex iff A is convex.

Theorem:

If F is convex and $F(\bar{u})=-\infty$ for some $\bar{u} \in V$, then on any half line starting from \bar{u}, either

$$
\begin{aligned}
& F(v)=-\infty \forall v \in[\bar{u}, \infty) \text { or } \\
& \exists v \in(\bar{u}, \infty) \text { such that }|F(v)|<\infty \quad \text { and } \\
& \\
& \quad F(w)=\left\{\begin{array}{c}
w \in[\bar{u}, v) \\
\hline \infty \\
w \in(v, \infty)
\end{array}\right.
\end{aligned}
$$

Proof:

Assume $\exists v \in(u, \infty)$ such that $|F(v)|<\infty$.
Let $w \in[\bar{u}, v)$, then $w=\lambda v+(1-\lambda) \bar{u}$ where $\lambda \in[0,1)$ and

$$
F(w) \leq \lambda F(v)+(1-\lambda) F(\bar{u})=-\infty
$$

For $w \in(v, \infty)$ we have $v=(1-\lambda) \bar{u}+\lambda w \quad \lambda \in(0,1)$ and

$$
F(v) \leq \lambda F(w)+(1-\lambda) F(\bar{u}) \text { assume here that }|F(w)|<\infty
$$

$$
F(w) \geq \frac{1}{\lambda}[F(v)-(1-\lambda) F(\bar{u})]=\infty \text { (contradiction!)(Try to consider different cases). }
$$

Definition:(proper function)
A function $F: V \rightarrow \bar{R}$ is called proper if $-\infty \notin \operatorname{dom} F$ i.e. $F(u)>-\infty \forall u \in V$.
Definition:(epigraph of a function)
Let $F: V \rightarrow \bar{R}$ be a function. The epigraph of is given by:

$$
\text { epi } F=\{(v, a) \in V \times R: F(v) \leq a\}
$$

Note that the projection of epi onto V is dom F.

$$
\begin{aligned}
& \text { If }(v, a) \in \text { epi } F \text {, then } F(v) \in a<\infty \text { i.e. } v \in \operatorname{dom} F \text {. } \\
& \text { If } v \in \operatorname{dom} F \text {, then }(v, F(v)) \in e p i F \text {. }
\end{aligned}
$$

Proposition:
Let $F: V \rightarrow \bar{R}$ be a function. Then
i) F is convex iff epi F is convex.
ii) F is convex, $\lambda>0 \Rightarrow \lambda F$ is convex.
iii) F, G are convex $\Rightarrow F+G$ are convex (provided that $\infty-\infty=\infty$).
iv) $\left(F_{i}\right)_{i \in I}, F(u)=\sup F_{i}(u) \Rightarrow F$ is convex where each F_{i} is convex.

Definition:(lower semicontinuous functions)
Let $F: V \rightarrow \bar{R}$ be a function. Then it is called l.s.c. if $\frac{\lim _{u \rightarrow \bar{u}}}{} F(u) \geq F(\bar{u}) \forall u \in V$.
end of Lec\# 2

3 Lecture 3

Recall that a function $F: V \longrightarrow \overline{\mathbb{R}}$ is lower semicontinuous if

$$
\liminf _{u \rightarrow \bar{u}} F(u) \geq F(\bar{u})
$$

Lemma 9

F is lsc iff $S_{a}=\{u \in V: F(u) \leq a\}$ is closed in V.
Proof. The necessary condition was done in the previous lecture. For sufficient condition, suppose that S_{a} for all $a \in \mathbb{R}$ and let $\bar{u} \in V$ and $a=\liminf _{u \rightarrow \bar{u}} F(u)$.
Case 1: If $a=\infty$ then nothing to prove.
Case 2: If a is finite $(\|a\|<\infty)$, take a sequence $\left\{u_{n}\right\}$ such that $u_{n} \rightarrow \bar{u}$. For each k, we can find n_{k} such that

$$
F\left(u_{n_{k}}\right) \leq a+\frac{1}{k}
$$

these $u_{n_{k}} \in S_{a+\frac{1}{k}}$ and we have

$$
u_{n_{k}} \in \bigcap_{i=1}^{k} S_{a+\frac{1}{2}}
$$

and since $\bigcap_{i=1}^{k} S_{a+\frac{1}{2}}$ is closed and $u_{n_{k}} \rightarrow \bar{u}$ then

$$
u \in \bigcap_{i=1}^{\infty} S_{a+\frac{1}{2}}=S_{a}
$$

$\therefore F(\bar{u}) \leq a=\liminf _{u \rightarrow \bar{u}} F(u)$
Case 3: If $a=-\infty$ consider $S_{n}=\{u \in V: F(u) \leq-n\}$.

Proposition 10

F is lsc iff epiF is closed.
Proof. Let $\phi: V \times \mathbb{R} \longrightarrow \overline{\mathbb{R}}$ be defined by

$$
\phi(u, a)=F(u)-a
$$

Now, let $\left(u_{n}, a_{n}\right) \rightarrow(u, a)$; that is $u_{n} \rightarrow u$ and $a_{n} \rightarrow a$. Then

$$
\liminf \phi\left(u_{n}, a_{n}\right)=\liminf F\left(u_{n}\right)-a_{n} \geq F(u)-a=\phi(u, a)
$$

So $\phi(u, a)$ is lsc, then by previous lemma the set $\{(u, a): \phi(u, a) \leq \alpha\}$ is closed for each $\alpha \in \overline{\mathbb{R}}$. In particular, if $\alpha=0$, the set

$$
\{(u, a): \phi(u, a) \leq 0\}=\{(u, a): F(u) \leq a\}
$$

is closed; which is the epigraph of f.
Now suppose that epiF is closed. Then the set
$\{(u, a) \in V \times \mathbb{R}: \phi(u, a) \leq r\}=\{(u, a) \in V \times \mathbb{R}: F(u) \leq a+r\}=\{(u, a) \in V \times \mathbb{R}: F(u) \leq a\}-\{(0, r): r \in \mathbb{R}\}$
is closed. Therefore, ϕ is lsc. It remains to show that F is lsc if ϕ is. For this let $\left\{u_{n}\right\}$ be a sequence such that $u_{n} \rightarrow \bar{u}$ and consider

$$
\liminf _{u_{n} \rightarrow \bar{u}} F\left(u_{n}\right)-a=\liminf F\left(u_{n}\right)-\lim \inf a=\lim \inf \left(F\left(u_{n}\right)-a\right)=\lim \inf \phi\left(u_{n}, a\right) \geq \phi(u, a)=F(u)-a
$$

Therefore F is lsc.

Lemma 11

If $\left(F_{i}\right)_{i \in I}$ is a family of lsc functions, then $F(u)=\sup _{i \in I} F_{i}(u)$ is as well lsc.

Proof. Claim: $e p i F=\bigcap e p i F_{i}$. To show this,

$$
\begin{aligned}
\text { let }(u, a) \in e p i F & \Leftrightarrow F(u) \leq a \\
& \Leftrightarrow \sup F_{i}(u) \leq a \\
& \Leftrightarrow F_{i}(u) \leq a \quad \forall i \\
& \Leftrightarrow(u, a) \in e p i F_{i} \quad \forall i \\
& \Leftrightarrow(u, a) \in \bigcap e p i F_{i}
\end{aligned}
$$

So F is lsc.

Definition 12

A function \bar{F} is called the lsc regularization of F if it is the greatest lsc minorant of F (i.e. $\bar{F}(u) \leq F(u)$ for all $u \in V$).

Theorem 13 If $F: V \longrightarrow \overline{\mathbb{R}}$. Then
(a) $e p i \bar{F}=\overline{e p i F}$.
(b) $\bar{F}(u)=\liminf F(u)$.

Proof.

(a) Read the book.
(b) Let $(u, a) \in e p i \bar{F}$, then $(u, a) \in \overline{e p i F}$ and there exists a sequence $\left(u_{n}, a_{n}\right)$ in epiF such that ($\left.u_{n}, a_{n}\right) \leftarrow$ (u, a). Now for each n we have $\bar{F}\left(u_{n}\right) \leq F\left(u_{n}\right) \leq a_{n}$ and

$$
\bar{F}(u) \leq \liminf \bar{F}\left(u_{n}\right) \leq \liminf F\left(u_{n}\right) \leq \liminf a_{n}=a=\bar{F}(u)
$$

Therefore $\bar{F}(u)=\lim \inf F(u)$ as desired.

Corollary 14

The function $F: V \longrightarrow \overline{\mathbb{R}}$ is lsc and convex iff F is weakly lsc and convex.

Proof.

F is lsc and convex $\Leftrightarrow e p i F$ is convex and closed
$\Leftrightarrow e p i F$ is the intersection of all half spaces containing it.
$\Leftrightarrow e p i F$ is weakly lsc and convex.
$\Leftrightarrow F$ is weakly lsc and convex.
which concludes the proof.

Proposition 15

If $F: V \longrightarrow \overline{\mathbb{R}}$ is lsc and convex and $F(\bar{u})=-\infty$ for some $\bar{u} \in V$, then F can not take any finite value.
Proof. Assume $|F(u)|<\infty$. Let $u_{n}=\alpha_{n} \bar{u}+\left(1-\alpha_{n}\right) u, \alpha_{n} \leftarrow 0$ then

$$
F\left(u_{n}\right)=F\left(\alpha_{n} \bar{u}+\left(1-\alpha_{n}\right) u\right) \leq \alpha_{n} F(\bar{u})+\left(1-\alpha_{n}\right) F(u)=-\infty
$$

which is a contradiction.

4 Lecture 4

Continuity of Convex Function

Proposition 16

$F: V \longrightarrow \bar{R}$, If F is Convex and bounded above in a nbhd of a point $u \in V$, then F is continuous at u.
Proof. Assume $u=0$, and $F(0)=0$, let W be nbhd of 0 and F is bounded by $a<\infty$ on W. Let $W_{1}=$ $W \cap-W$, let $\epsilon>0$ be given, let $v \in \epsilon W_{1}$.

$$
F(v)=F\left(\frac{\epsilon v}{\epsilon}\right) \leq \epsilon F\left(\frac{v}{\epsilon}\right) \leq \epsilon a,
$$

also,-v $\in W_{1}$

$$
\begin{gathered}
0=\frac{1}{2} v-\frac{1}{2} v \\
0=F(0) \leq \frac{1}{2} F(v)+\frac{1}{2} F(-v) \Longrightarrow \\
-F(v) \leq F(-v)=F\left(\epsilon \frac{-v}{\epsilon}\right) \leq \epsilon F\left(\frac{-v}{\epsilon}\right) \leq \epsilon a
\end{gathered}
$$

then

$$
|F(v)| \leq \epsilon a \quad \Longrightarrow F \text { is continuous at } 0 .
$$

Proposition 17

Let $F: V \rightarrow \bar{R}$ be a convex function, TFAE
(i) \exists an open, non-empty $O \subseteq V$, s.t. F is bounded above (by $a<\infty$) on V and $F(O) \neq\{-\infty\}$.
(ii) \widehat{o}

Proof. Clearly (ii) \Longrightarrow (i). Conversely for (i) \Longrightarrow (ii), $\widehat{\operatorname{domF}} \neq \phi$ since $O \subseteq \operatorname{domF}$. Let $u \in \widehat{\operatorname{domF}}$ and choose
 $u \in\left(w_{1}, v\right)$

$$
u=\alpha w_{1}+(1-\alpha) v \in \alpha w_{1}+(1-\alpha) O
$$

let $z \in \alpha w_{1}+(1-\alpha) O$

$$
\begin{gathered}
z=\alpha w_{1}+(1-\alpha) z_{2} \text { where } z_{2} \in O \\
F(z) \leq \alpha F\left(w_{1}\right)+(1-\alpha) F\left(z_{2}\right) \leq \alpha F\left(w_{1}\right)+(1-\alpha) a
\end{gathered}
$$

therefore F is bounded above on the open nbhd $\alpha w_{1}+(1-\alpha) O$ of u. Then F is continuous at u.
COROLLARY 18
$F: V \rightarrow R$ convex, V is finite dimension, then F is continuous on $\widehat{o o}$ domF.
Proof. If $\widehat{o} \widehat{\operatorname{domF}} \neq \phi$, then $\widehat{d o m F}$ contains an interior point. $\widehat{o o m F}$ contains $(n+1)$ affinely independent vectors ($u_{1}, u_{2}, . ., u_{n+1}$). For $u \in \widehat{\frac{o}{d o m F}}$, there exists an open set of the form $I_{1} \times I_{2} \times \ldots I_{n}, u$ can be written as $u=\sum_{i=1}^{n+1} \lambda_{i} u_{i}$ s.t. $0 \leq \lambda_{i} \leq 1$ and $\sum_{i=1}^{n+1} \lambda_{i}=1$, then

$$
F(u) \leq \sum_{i=1}^{n+1} \lambda_{i} F\left(u_{i}\right) \leq \sum_{i=1}^{n+1} F\left(u_{i}\right)
$$

therefor F is bounded above on a nbhd of u.

Corollary 19

Let V be a normed space, $F: V \rightarrow \bar{R}$ is a a proper convex function. TFAE:
(i) \exists an open set $O \subseteq V$ on which F is bounded in O.
(ii) $\widehat{o} \frac{o}{\operatorname{domF}} \neq \phi$, and F is locally Lipschitz on $\widehat{d o m F}$.

5 Lecture 5

Theorem:

Let V be a real vector space and let $F: V \rightarrow \bar{R}$.Then the following are equivalent:
(1) $\exists \emptyset \neq O \subseteq V$ such that F is bounded above in O.
(2) $\stackrel{\circ}{d o m} F \neq \emptyset, F$ is locally Lipschitz on $\stackrel{\circ}{\text { dom } F}$

Proof:
$(1) \Rightarrow(2)$
Let $u \in \stackrel{\circ}{\operatorname{dom}} F$. Then, F is continuous at u. So F is absolutely bouned (by a) in a ball $\overline{B(u, r)}, r>0$. Let $v \in$

$$
\begin{aligned}
& B(u, r) \text {. Write } v=(1-\lambda) u+\lambda w_{1} \\
& \Rightarrow \quad v-u=\lambda\left(w_{1}-u\right) \\
& \Rightarrow \quad\|v-u\|=\lambda r \\
& \Rightarrow \quad F(v)-F(u)=F\left((1-\lambda) u+\lambda w_{1}\right)-F(u) \\
& \quad \leq(1-\lambda) F(u)+\lambda F\left(w_{1}\right)-F(u) \\
& \\
& \\
& \\
& \quad=\lambda\left(F\left(w_{1}\right)-F(u)\right)<2 a \frac{\|u-v\|}{r}
\end{aligned}
$$

Now if $u=(1-\bar{\lambda}) v+\bar{\lambda} w_{2}$

$$
\begin{aligned}
\Rightarrow & u-v=\bar{\lambda}\left(w_{2}-v\right) \Rightarrow \bar{\lambda}=\frac{\|u-v\|}{r+\|u-v\|} \\
& F(u)-F(v) \leq 2 a \bar{\lambda}=2 a \frac{\|u-v\|}{r+\|u-v\|} \leq \frac{2 a}{r}\|u-v\| \Rightarrow \\
& |F(u)-F(v)| \leq \frac{2 a}{r}\|u-v\|
\end{aligned}
$$

For any $v \in \widehat{\circ} \stackrel{\circ}{\operatorname{dom}} F$ cover $[u, v]$ by a finite set $B\left(u_{i}, r_{i}\right), i=1,2, \ldots, n$ for which

$$
u_{1}=u, \quad u_{n}=v \text { and } u_{i+1} \in B\left(u_{i}, r_{i}\right) . \text { Then, }
$$

$$
\begin{aligned}
|F(u)-F(v)| & \leq \sum_{i=1}^{n-1}\left|F\left(u_{i+1}\right)-F\left(u_{i}\right)\right| \\
& \leq \sum_{i=1}^{n-1} \frac{2 a_{i}}{r_{i}}\left\|u_{i+1}-u_{i}\right\| \\
& \leq \sum_{i=1}^{n-1} \frac{2 a_{i}}{r_{i}} c_{i}\|u-v\|
\end{aligned}
$$

$$
\text { where } c_{i}=\frac{\left\|u_{i+1}-u_{i}\right\|}{\|u-v\|}
$$

Definition:(Cafs)

A caf is the pointwise (pw) supermum of a continuous affine fanuctionals.
Definition: $(\Gamma(V)$)
$\Gamma(V)$ is the set of funtions $F: V \rightarrow \bar{R}$ which are the pw superma of families of cafs.
Note:
(1) ∞ and $-\infty \in \Gamma(V)$
(2) $\Gamma_{\circ}(V)=\Gamma(V) \backslash\{-\infty, \infty\}$.
(3) $F \in \Gamma(V) \Rightarrow F$ is convex and l.s.c.

Proposition:
The following are equivalent:
(i) $F \in \Gamma(V)$
(ii) F is convex and l.s.c. and if F assumes the value of $-\infty$, then $F \equiv-\infty$

Proof:
(ii) \Rightarrow (i)

Suppose that F is convex and l.s.c. If $F \equiv-\infty, F \in \Gamma(V)$ and if $F \equiv \infty, F \in \Gamma(V)$.
If F is proper and (F is not $\equiv \infty$). Let $u \in V$. Then we have two cases:
Case(1): $F(u)<\infty$
Let $\bar{a}<F(u)$. Then \exists a hyperplane $H: L(v)+\alpha a+\beta=0 \quad \forall v \in V$ that strictly separate epi F and (u, \bar{a}). i.e.

$$
\begin{aligned}
& L(v)+\alpha a+\beta>0 \quad \forall(v, a) \in \text { epi } F \quad \text { and } \\
& L(v)+\alpha \bar{a}+\beta<0
\end{aligned}
$$

Claim that $\alpha>0$.

$$
\begin{aligned}
& \text { For }(u, F(u)) \in \text { epi } F \text { we have } L(u)+\alpha F(u)+\beta>0 \\
& \text { and }-L(u)-\alpha \bar{a}-\beta>0 \\
& \Rightarrow \alpha(F(u)-\bar{a})>0 \quad \Rightarrow \alpha>0
\end{aligned}
$$

$$
\begin{aligned}
& \text { So, } F(v)>-\frac{1}{\alpha}(L(v)+\beta) \quad \forall v \in V \\
& \Rightarrow \quad \bar{a}<-\frac{1}{\alpha}(L(u)+\beta)<F(u)
\end{aligned}
$$

Case (2): $F(u)=\infty$
This means that \exists a hyperplane $H: L(u)+\alpha a+\beta=0 \quad$ that strictly separate epi F and (u, \bar{a}).If $\alpha \neq 0$, we are back to case (1).
If $\alpha=0$, then $H: L(u)+\beta=0$

$$
\text { and } \quad L(u)+\beta<0 \quad \text { if we substitute with }(u, \bar{a}) .
$$

From case(1) we can find a caf minorant $m(v)+\gamma$
$F(v) \geq m(v)+\gamma \quad \forall v \in V$

$$
\therefore F(v) \geq m(v)+\gamma-c(L(v)+\beta) \quad \forall c \geq 0
$$

We want to choose c such that

$$
\begin{aligned}
& m(u)+\gamma-c(L(u)+\beta)>\bar{a} \\
& c>\frac{\bar{a}-m(u)-\gamma}{-(L(u)+\beta)} \\
& \quad \Rightarrow F \in \Gamma(V)
\end{aligned}
$$

end of Lec\# 5

6 Lecture 6

Γ-reqularization

Definition: Let $F: V \longrightarrow \overline{\mathbb{R}}$, a function $G \in \Gamma(V)$ is called the Γ regularizer of F if G is the pointwise supremum of all caf minorant of F.
Remark:s

* If G is the $\Gamma-r e g F$, then G is lower semicontinuous and convex.
* note that $G=\Gamma-\operatorname{reg} F$ iff G is the greatest minorant in $\Gamma(V)$ of F.
* G is a minorant and if $\widetilde{G} \in \Gamma(V)$ is a minorant of F, then $G \geqslant \widetilde{G}$. on the other hand, suppose that G is the greatest minorant of F in
$\Gamma(V)$.Let G_{1} be the $\Gamma-\operatorname{reg} F \Longrightarrow G_{1} \geqslant G$, but by hypothesis $G \geqslant G_{1} \Longrightarrow G=G_{1}$.

Proposition: Let $F: V \longrightarrow \overline{\mathbb{R}}, F$ has a caf minorant, $G=\Gamma-r e g F \Longrightarrow e p i G=\overline{c o} e p i F$
Proof:
$e p i G \supseteq \overline{c o} e p i F$. on the other hand, assume $(\overline{\bar{v}}, \bar{a}) \notin \overline{c o} e p i F \Longrightarrow$ there exists a caf $l(u)+\alpha a+\beta$ strictly separating (\bar{v}, \bar{a}) and $\overline{c o} e p i F$.
$\therefore l(\overline{\bar{v}})+\alpha \bar{a}+\beta<0 \operatorname{andl}(v)+\alpha a+\beta>0 \forall(v, a) \in \overline{\operatorname{co} e p i F .}(\overline{\bar{v}}, F(\overline{\bar{v}})) \in e p i F \subseteq \overline{c o e p i F} \Longrightarrow l(\overline{\bar{v}})+\alpha F(\overline{\bar{v}})+\beta>0$ and $-l(\overline{\bar{v}})-\alpha \bar{a}-\beta>$
adding these inequalities

$$
\Longrightarrow \alpha(F(\overline{\bar{v}})-\bar{a})>0 \Longrightarrow \alpha>0
$$

for
$\left(v, F(v) \in e p i F \Longrightarrow l(v)+\alpha F(v)+\beta>0 \Longrightarrow F(v)>\frac{-1}{\alpha}(l(v)+\beta) \Longrightarrow G(v)>\frac{-1}{\alpha}(l(v)+\beta) \forall v \in \operatorname{dom} F \Longrightarrow G(\bar{v})>\frac{-1}{\alpha}(l(\bar{v})+\beta\right.$
remark:
$F: V \longrightarrow \overline{\mathbb{R}}, \bar{F}=$ lsc req F and $G=\Gamma-r e g F \Longrightarrow$

1) $G \leq \bar{F} \leq F$
2) if F is convex, with one caf minorant, then $G=\bar{F}$. indeed;

$$
F \text { is convex } \Longrightarrow \bar{F} \text { convex }, \text { epi } \bar{F}=\overline{e p i F}, \bar{F} \in \Gamma(V) \Longrightarrow \bar{F} \leq G \Longrightarrow G=\bar{F}
$$

1.4 polar Functions

Let $F: V \longrightarrow \overline{\mathbb{R}}$,suppose $\langle u, \stackrel{*}{u}\rangle-\alpha$ is a minorant of F. the polar function $\stackrel{*}{F}: \stackrel{*}{V} \longrightarrow \overline{\mathbb{R}}$ is defined by

$$
\stackrel{*}{F}(\stackrel{*}{u})=\sup _{u \in V}\langle u, \stackrel{*}{u}\rangle-F(u)
$$

7 Lecture 7

Polar Functions

Let $F: V \longrightarrow \overline{\mathbb{R}}$,suppose $\langle u, \stackrel{*}{u}\rangle-\alpha$ is a minorant of F. the polar function $\stackrel{*}{F}: \stackrel{*}{V} \longrightarrow \overline{\mathbb{R}}$ is defined by

$$
\stackrel{*}{F}(\stackrel{*}{u})=\sup _{u \in V}\langle u, \stackrel{*}{u}\rangle-F(u)
$$

Note that for any caf minorant $\langle u, \stackrel{*}{u}\rangle-\alpha$ of F we have

$$
\langle u, \stackrel{*}{u}\rangle-\alpha \leq\langle u, \stackrel{*}{u}\rangle-\stackrel{*}{F}(\stackrel{*}{u})
$$

Properties of the polar function

1) $\stackrel{*}{F}(0)=-\inf _{u \in V} F(u)$
2) $F \leq G \Longrightarrow \stackrel{*}{G} \leq \stackrel{*}{F}$
3) $\left(\inf _{i \in I} F_{i}\right)^{*}=\sup _{i \in I}{ }^{*} F_{i}$
4) $\left(\sup _{i \in I} F_{i}\right)^{*} \leq \inf _{i \in I} F_{i}^{*}$
5) $(\lambda F)^{*}\left(u^{*}\right)=\lambda F^{*}\left(\frac{u^{*}}{\lambda}\right), \lambda>0$
6) $(F+a)^{*}=F^{*}-a$
7) $\left(F_{a}\right)^{*}\left(u^{*}\right)=\stackrel{*}{F}\left({ }_{u}^{u}\right)+\left\langle a, u^{*}\right\rangle$ where $F_{a}(u)=F(u-a)$
*Bipolar Function
The bipolar function is defined by

$$
\stackrel{* *}{F}(u)=\sup _{\stackrel{*}{u} \in \stackrel{*}{V}}\langle u, \stackrel{*}{u}\rangle-\stackrel{*}{F}\left({ }^{*}\right)
$$

Remarks:

1) ${ }^{* *} \in \Gamma(V)$
2) $\stackrel{* *}{F}=\Gamma-r e g F$

Proof of (2)
Step 1: we show it is a minorant of F

$$
\begin{aligned}
\stackrel{*}{F}(\stackrel{*}{u}) & \geqslant\langle u, \stackrel{*}{u}\rangle-F(u) \Longrightarrow\langle u, \stackrel{*}{u}\rangle-\stackrel{*}{F}(*) \leq F(u) \Longrightarrow \sup _{\stackrel{*}{u} \in \stackrel{*}{V}}\langle u, \stackrel{*}{u}\rangle-\stackrel{*}{F}\left({ }_{u}^{u}\right) \leq F(u) \\
& \Longrightarrow \stackrel{* *}{F}(u) \leq F(u) \Longrightarrow \stackrel{* *}{F} \text { is a minorant of } F \therefore \stackrel{* *}{F} \leq \Gamma-r e g F
\end{aligned}
$$

on the other hand

$$
\sup _{\stackrel{*}{u} \in \stackrel{*}{V}} \sup _{\alpha}\langle u, \stackrel{*}{u}\rangle-\alpha \leq\langle u, \stackrel{*}{u}\rangle-\stackrel{*}{F}\left(*_{u}^{u}\right) \Longrightarrow \sup _{\stackrel{*}{u} \in \stackrel{*}{V}} \sup _{\alpha}\langle u, \stackrel{*}{u}\rangle-\alpha \leq\langle u, \stackrel{*}{u}\rangle-\stackrel{*}{F}\left(*_{u}^{u}\right) \Longrightarrow \Gamma-r e g F \leq \stackrel{* *}{F}
$$

hence, $\stackrel{* *}{F}=\Gamma-r e g F$.
Cor 1: If $F \in \Gamma(V) \Longrightarrow \stackrel{* *}{F}=F$
Cor2: ${ }^{* * *}=\stackrel{*}{F}$

EFS(1): copute $(\ln x)^{*}$
answer: $(\ln x)^{*}=\infty$
EFS(2): If $F(x)=\left|x^{2}-1\right|$, compute $\stackrel{* *}{F}$.
answer: $\stackrel{* *}{F}(x)=\left\{\begin{array}{lll}x^{2}-1 & \text { if } & |x| \geqslant 1 \\ 0 & \text { if } & |x| \leq 1\end{array}\right.$
Remark: the mapping $F \longrightarrow \stackrel{*}{F}$ is a bijection between $\Gamma(V)$ and $\Gamma\left(V^{*}\right)$ indeed;
Define $T: \Gamma(V) \longrightarrow \Gamma\left(V^{*}\right)$ by $T F=\stackrel{*}{F}$

1) T is one-to-one: assume $T F=T G$ for $F, G \in \Gamma(V) \Longrightarrow \stackrel{*}{F}=\stackrel{*}{G} \Leftrightarrow \stackrel{* *}{F}=\stackrel{* *}{G} \Leftrightarrow F=G$
2) T is on to.indeed; suppose $G \in \Gamma(V) \Longrightarrow \stackrel{*}{G} \in \Gamma(V)$ and $T \stackrel{*}{G}=\stackrel{* *}{G}=G$

Dual Functions
two functions $F \in \Gamma(V)$ and $G \in \Gamma(\stackrel{*}{V})$ are called induality if $\stackrel{*}{F}=G$ and $\stackrel{*}{G}=F$
$* \infty \in \Gamma(V)$ is dual with $-\infty \in \Gamma\left(V^{*}\right)$.
** $\pm \infty$ are dual with $\mp \infty$
*** the mapping $F \longmapsto \stackrel{*}{F}$ is a bijection between $\Gamma_{0}(V)$ and $\Gamma_{0}(V)$
Examples:

1) $\chi_{A}(u)= \begin{cases}0 & \text { if } u \in A \\ \infty & \text { if } u \notin A\end{cases}$

$$
\stackrel{*}{\chi}_{A}(\stackrel{*}{u})=\sup _{u \in V}\langle u, \stackrel{*}{u}\rangle-\chi_{A}(u)=\sup _{u \in A}\langle u, \stackrel{*}{u}\rangle
$$

* $_{\chi}^{*}{ }_{A}(u)$ is lwoer semicontinuous, convex and positive homogeneous
** $\stackrel{*}{\chi}_{A}$ is called the support function of A
$\operatorname{EFS}(3):$ show that ${\underset{\chi}{*}}_{A}=\chi_{\bar{A}}$

2) let $\Phi \in \Gamma_{0}(\mathbb{R})$ be an even function and let $\stackrel{*}{\Phi} \in \Gamma_{0}(\mathbb{R})$ be the polar function of Φ. Let V be a normed space, Define $F \in \Gamma(V)$ and $G \in \Gamma\left({ }_{V}^{*}\right)$ by

$$
F(u)=\Phi(\|u\|) \text { and } G(u)=\stackrel{*}{\Phi}(\|*\|), \text { then } F \text { and } G \text { are dual. }
$$

indeed;

$$
\begin{aligned}
\stackrel{*}{F}(\stackrel{*}{u}) & =\sup _{u \in V}\langle u, \stackrel{*}{u}\rangle-\Phi(\|u\|)=\sup _{t \in[0, \infty)}\langle u, \stackrel{*}{u}\rangle-\Phi(t)=\sup _{t \in[0, \infty)\|v\|^{\prime}=1}\langle v, \stackrel{*}{u}\rangle-\Phi(t) \\
& =\sup _{t \in[0, \infty)} t\|*\|-\Phi(t)=\sup _{t \in \mathbb{R}} t\|\stackrel{*}{u}\|-\Phi(t)=\stackrel{*}{\Phi}(\|*\|)=G(u) \Longrightarrow G \in \Gamma(\stackrel{*}{V})
\end{aligned}
$$

Similarly, $G\left({ }^{*} u\right)=F(u)$.
3) let $\Phi(x)=\frac{1}{p}|x|^{p}$ and $\stackrel{*}{\Phi}(t)=\frac{1}{q}|x|^{q}$ where $1<p, q<\infty$ and $\frac{1}{p}+\frac{1}{q}=1$.

$$
\stackrel{*}{\Phi}(t)=\sup _{x \in \mathbb{R}} t x-\frac{1}{p}|x|^{p}
$$

let $f(x)=x-\frac{1}{p}|x|^{p}$.
Case1: $x=0 \Longrightarrow f_{m}=0$
Case2: $x \neq 0$

$$
\begin{gathered}
f^{\prime}(x)=t-|x|^{p-1} \frac{x}{|x|}=0 \Longrightarrow t=x|x|^{p-2} \Longrightarrow f_{m}=x^{2}|x|^{p-2}-\frac{1}{p}|x|^{p}=|x|^{p}\left(1-\frac{1}{p}\right)=\frac{1}{q}|x|^{p} \\
|t|=|x|^{p-1} \Longrightarrow|t|^{\frac{p}{p-1}}=|x|^{p} \Longrightarrow|t|^{q}=|x|^{p} \Longrightarrow f_{m}=\frac{1}{q}|t|^{q}
\end{gathered}
$$

8 Lecture 8

Subdifferentiability

The function $F: V \longrightarrow \overline{\mathbb{R}}$ is called subdifferentiable at $u \in V$ if there exists a $u^{*} \in V^{*}$ such that $\forall v \in V,<$ $u-v, u^{*}>+F(u)$ is a caf minorant of F. The set of all subgradients (may be empty) at u is denoted by $\partial F(u)$.

Proposition 20

$u^{*} \in \partial F(u)$ iff $F(u)+F^{*}\left(u^{*}\right)=\left\langle u, u^{*}\right\rangle$.
Proof. If $u^{*} \in \partial F(u)$

$$
\begin{aligned}
\left\langle v-u, u^{*}\right\rangle & \leq F(v) \\
-\left\langle u, u^{*}\right\rangle+F(u) & \leq-\left\langle v, u^{*}\right\rangle+F(v) \\
\left\langle u, u^{*}\right\rangle-F(u) & \geq\left\langle v, u^{*}\right\rangle-F(v)
\end{aligned}
$$

Taking the supremum over all $v \in V$, we get

$$
F^{*}\left(u^{*}\right) \geq\left\langle u, u^{*}\right\rangle-F(u) \geq \sup _{v \in V}\left\langle v, u^{*}\right\rangle-F(v) \geq F^{*}\left(u^{*}\right)
$$

This shows that $F(u)+F^{*}\left(u^{*}\right)=\left\langle u, u^{*}\right\rangle$.
Now if $F(u)+F^{*}\left(u^{*}\right)=\left\langle u, u^{*}\right\rangle$, then $F(u)+\left\langle v, u^{*}\right\rangle-F(v) \leq F(u)+F^{*}\left(u^{*}\right)=\left\langle u, u^{*}\right\rangle$. Hence

$$
F(v) \geq\left\langle v-u, u^{*}\right\rangle+F(u)
$$

Which implies that $u^{*} \in \partial F(u)$.

Proposition 21

$u^{*} \in \partial F(u)$, then $F^{* *}(u)=F(u)$ and $u^{*} \in \partial F^{* *}(u)$.
Proof. If $u^{*} \in \partial F(u)$, then $\left\langle v-u, u^{*}\right\rangle+F(u) \leq F^{* *}(u) \leq F(v)$ (because from previous proposition, we have $F(u)+F^{*}\left(u^{*}\right)=\left\langle u, u^{*}\right\rangle$ also $\left\langle v-u, u^{*}\right\rangle+F(u) \leq F(v)$. Now

$$
\left\langle v-u, u^{*}\right\rangle+F(u)=\left\langle v, u^{*}\right\rangle-\left\langle u, u^{*}\right\rangle+F(u)=\left\langle v, u^{*}\right\rangle+F^{*}\left(u^{*}\right) \leq F^{* *}(u)
$$

So $\left.\left\langle v-u, u^{*}\right\rangle+F(u) \leq F^{* *}(u) \leq F(v)\right)$
From this we conclude that $u^{*} \in \partial F^{* *}(u)$. Furthermore, at $v=u$, we have

$$
F(u) \leq F^{* *}(u) \leq F(u) \Rightarrow F^{* *}(u)=F(u)
$$

Now if $F^{* *}(u)=F(u)$, then $\partial F(u)=\partial F^{* *}(u)$.

$$
\begin{aligned}
\partial F(u) & =\left\{u^{*} \in V^{*}: F(u)+F^{*}(u)=<u, u^{*}>\right\} \\
& =\left\{u^{*} \in V^{*}: F(u)+F^{*}(u) \leq<u, u^{*}>\right\} \\
& =\left\{u^{*} \in V^{*}: F^{*}(u)-<u, u^{*}>\leq F(u)\right\}
\end{aligned}
$$

Since $F^{*} \in \Gamma\left(V^{*}\right)$ (hence F^{*} is lsc and convex), then $\partial F(u)$ is closed and convex and $\sigma\left(V^{*}, V\right)$ closed.
THEOREM 22 If $F: V \longrightarrow \overline{\mathbb{R}}$ is convex, continuous and finite at $u \in V$, then $\partial F(v) \neq \phi$ for all $v \in \overbrace{\operatorname{dom} F}^{\circ}$. In particular $\partial F(u) \neq \phi$.

Proof.

1. $\overbrace{\operatorname{dom} F}^{0} \neq \phi, F$ is continuous on $\overbrace{\operatorname{dom} F}^{0}$ and is proper over V.
2. $\overbrace{\text { epi } F}^{0} \neq \phi(u \in \overbrace{\operatorname{dom} F}^{0}, F$ is bounded in a neighbourhood \mathcal{O}_{u} i.e. $F(v) \leq m$ for all $v \in \mathcal{O}_{u}$ that means $\left.\mathcal{O}_{u} \times(m+\epsilon, \infty) \in \operatorname{epi} F\right)$.
3. The set of points $(u, F(u)) \forall u$ dom F are boundary points of epi F. epi $F=\overbrace{\text { epi } F}^{0}+\mathrm{bd}(\mathrm{epi} F)$.
4. ($u, F(u)$) is a support point for epi F for each $u \in \operatorname{dom} F$.
5. Let $v \in \overbrace{\operatorname{dom} F}$. Since $(v, F(v))$ is a support point for epi F, then there is a hyperplane H :

$$
\left\langle w, u^{*}\right\rangle+\alpha a+\beta=0
$$

such that $(v, F(v)) \in H$ and $\left\langle w, u^{*}\right\rangle+\alpha a+\beta \geq 0$ for all $(w, a) \in \mathrm{epi} F$.

$$
\left(v, F(v) \in H \Rightarrow \beta=-\left\langle v, u^{*}\right\rangle-\alpha F(v)\right.
$$

So H is

$$
\left\langle w-v, u^{*}\right\rangle+\alpha(a-F(v))=0
$$

α must be positive; take \bar{a} sufficiently large then $(v, \bar{a}) \in \overbrace{\operatorname{epi} F}$ So

$$
\alpha(\bar{a}-F(v)) \geq 0 \Rightarrow \alpha \geq 0
$$

Assume that $\alpha=0$. Then $\left\langle w, u^{*}\right\rangle+\beta=0$ for all $\langle w, a\rangle \in H$.

9 Lecture 9

We have seen in the previous lecture the if $F: V \longrightarrow \overline{\mathbb{R}}$ is convex, finite ($u \in V,|F(u)|<\infty$) and continuous at u. Then $\partial F(v) \neq \phi$ for all $v \in \overbrace{\text { dom }}^{\circ}$. The following inequality is satisfied for each $u^{*} \in \partial F(u)$

$$
\left\langle v-u, u^{*}\right\rangle+\alpha(a-F(u)) \geq 0, \quad \forall \quad(v, a) \in \mathrm{epi} F
$$

So for $(v, F(v))$ we have

$$
\begin{array}{r}
\left\langle v-u, u^{*}\right\rangle+\alpha(F(v)-F(u)) \geq 0 \\
F(v) \geq\left\langle v-u,-\frac{1}{\alpha} u^{*}\right\rangle+F(u)
\end{array}
$$

So $-\frac{1}{\alpha} u^{*} \in \partial F(u)$; which shows that $\partial F(u) \neq \phi$

Relation with Gâteaux derivative

$F: V \longrightarrow \overline{\mathbb{R}}, u \in V$. If there exists $u^{*} \in V^{*}$ such that

$$
F^{\prime}(u, v)=\lim _{\lambda \rightarrow 0+} \frac{F(u+\lambda v)-F(u)}{\lambda}=\left\langle v, u^{*}\right\rangle, \quad \forall v \in V
$$

Then u^{*} is called the Gâteaux derivative of F at u, denoted $\mathrm{b} F^{\prime}(u) . F^{\prime}(u, v)$ is called the directional derivative of F at u in the direction of v. If F is convex, then the above limits always exists; since $\frac{F(u+\lambda v)-F(u)}{\lambda}$ is nondecreasing function of λ (check it).

Proposition 23

Let $F: V \longrightarrow \overline{\mathbb{R}}, u \in V$. If $F^{\prime}(u)$ exists, then $\partial F(u)=\left\{F^{\prime}(u)\right\}$. Conversely, if F is continuous and finite at u and $\partial F(u)$ consists of only one subgradient, then $F^{\prime}(u)$ exists and $\partial F(u)=\left\{F^{\prime}(u)\right\}$.
Proof. $F^{\prime}(u)$ exists; that is

$$
\left\langle v, F^{\prime}(u)\right\rangle=\lim _{\lambda \rightarrow 0+} \frac{F(u-\lambda v)-F(u)}{\lambda} \leq \frac{F(u-\lambda v)-F(u)}{\lambda}, \quad \forall \quad \lambda \geq 0
$$

Let $u+\lambda v=w$, then

$$
\begin{array}{r}
\left\langle\frac{w-u}{\lambda}, F^{\prime}(u)\right\rangle \leq \frac{F(w)-F(u)}{\lambda} \\
\left\langle w-u, F^{\prime}(u)\right\rangle+F(u) \leq F(w) \\
\therefore F^{\prime}(u) \in \partial F(u)
\end{array}
$$

Now, suppose $u^{*} \in \partial F(u)$

$$
\left\langle v-u, u^{*}\right\rangle+F(u) \leq F(v), \quad v \in V
$$

Let $\lambda>0$, put $v=u+\lambda w$. So we have for all $w \in V$ (using the convexity of F)

$$
\left\langle w, u^{*}\right\rangle+F(u) \leq \frac{F(u+\lambda w)-F(u)}{\lambda} \leq \frac{F\left(u+\lambda_{0} w\right)-F(u)}{\lambda_{0}} \quad \text { where } \lambda_{0}>\lambda
$$

This shows that $F^{\prime}(u)$ exists. Taking the limit as $\lambda \rightarrow 0+$ we have

$$
\left\langle w, u^{*}\right\rangle \leq\left\langle w, F^{\prime}(u)\right\rangle \quad \forall \quad w \in V
$$

So $u^{*}=F^{\prime}(u)\left(\right.$ since $\left.\left\langle-w, u^{*}\right\rangle \leq\left\langle-w, F^{\prime}(u)\right\rangle \Rightarrow\left\langle w, u^{*}\right\rangle \geq\left\langle w, F^{\prime}(u)\right\rangle\right)$

Lemma 24

Let $F: A \subseteq V \longrightarrow \mathbb{R}$, where A is a convex set, F is Gâteaux differentiable on A. Then $A=$ internal A.

Proof. Let $u \in A$. Since $F^{\prime}(u)$ exists, then

$$
\left\langle v, F^{\prime}(u)\right\rangle=\lim _{\lambda \rightarrow 0+} \frac{F(u+\lambda v)-F(u)}{\lambda}
$$

Hence, for any $v \in V, u+\lambda v \in A$ for sufficiently small λ. So u is an internal to A.
Proposition 25
Let $F: A \subseteq V \longrightarrow \mathbb{R}$, where A is a convex set, F is Gâteaux differentiable on A. Then the following statements are equivalent.
(i) F (strictly) convex on A.
(ii) $F(v)(>) \geq F(u)+\left\langle F^{\prime}(u), v-u\right\rangle$.

Proof. $(i) \Rightarrow(i i)$ Suppose that F is strictly convex.

$$
\left\langle w, F^{\prime}(u)\right\rangle=\lim _{\lambda \rightarrow 0+} \frac{F(u+\lambda w)-F(u)}{\lambda} \leq \frac{F(u+\lambda w)-F(u)}{\lambda}, \quad \forall \quad \lambda>0
$$

Let $u+\lambda w=v$, then

$$
\left\langle\frac{v-u}{\lambda}, F^{\prime}(u)\right\rangle \leq \frac{F(v)-F(u)}{\lambda}
$$

So,

$$
F(v) \geq\left\langle v-u, F^{\prime}(u)\right\rangle+F(u)
$$

Since v is an internal point of A (by previous lemma). Then for $v=\alpha v_{1}+(1-\alpha) u, \quad \alpha \in(0,1)$ we have

$$
\begin{aligned}
\alpha F\left(v_{1}\right)+(1-\alpha) F(u) & >F(v) \geq\left\langle\alpha v_{1}+(1-\alpha) u-u, F^{\prime}(u)\right\rangle+F(u) \\
\alpha F\left(v_{1}\right) & >\alpha\left\langle v_{1}-u, F^{\prime}(u)\right\rangle+\alpha F(u) \\
F\left(v_{1}\right) & >\left\langle v_{1}-u, F^{\prime}(u)\right\rangle+F(u)
\end{aligned}
$$

This proves the first direction.

10 Lecture 10

Let $F: A \subseteq V \longrightarrow \mathbb{R}$, where A is convex. F^{\prime} exists on $A . F$ is convex iff

$$
F(v) \geq F(u)+\left\langle F^{\prime}(u), v-u\right\rangle, \quad \forall \quad u, v \in A
$$

proposition proof continued. Let $u, v \in A$

$$
\begin{align*}
& F(v) \geq F[u+\lambda(v-u)]+(1-\lambda)\left\langle F^{\prime}[u+\lambda(v-u)], v-u\right\rangle \tag{1}\\
& F(u) \geq F[u+\lambda(v-u)]+\lambda\left\langle F^{\prime}[u+\lambda(v-u)], u-v\right\rangle \tag{2}
\end{align*}
$$

Multiplying (1) by λ and (2) by $1-\lambda$ and adding we get

$$
F[(1-\lambda) u+\lambda v] \leq(1-\lambda) F(u)+\lambda F(v)
$$

which completes the proof of the proposition.

Proposition 26

Let $F: A \subseteq V \longrightarrow \mathbb{R}, A$ is convex, F^{\prime} exists on A. Then F is convex F^{\prime} is monotone. That is

$$
\left\langle F^{\prime}(u)-F^{\prime}(v), u-v\right\rangle \geq 0, \quad \forall \quad u, v \in A
$$

Subdifferential Calculus

Let $F: V \longrightarrow \overline{\mathbb{R}}$. Then

- $\partial(\lambda F)(u)=\lambda \partial F(u), \quad \forall \lambda>0$.
- $\partial\left(F_{1}+F_{2}\right)(u) \supseteq \partial F_{1}(u)+\partial F_{2}(u)$.

Now choose $u^{*} \in \partial F_{1}(u), v^{*} \in \partial F_{2}(u)$

$F_{1}(v)$	$\geq F_{1}(u)+\left\langle v-u, u^{*}\right\rangle$,	$\forall v \in V$	
$F_{2}(v)$	$\geq F_{2}(u)+\left\langle v-u, v^{*}\right\rangle$,	$\forall v \in V$	
Adding			
$\left(F_{1}+F_{2}\right)(v)$	$\geq\left(F_{1}+F_{2}\right)(u)+\left\langle v-u, u^{*}+v^{*}\right\rangle, \quad \forall v \in V$		

Proposition 27

Let $F_{1}, F_{2} \in \Gamma(V), \bar{u} \in \operatorname{dom} F_{1} \cap \operatorname{dom} F_{2}, F_{1}$ is continuous at \bar{u}, then

$$
\partial\left(F_{1}+F_{2}\right)(u)=\partial F_{1}(u)+\partial F_{2}(u)
$$

Proof. Let $u^{*} \in \partial\left(F_{1}+F_{2}\right)(u)$. Then

$$
-\left\langle v-u, u^{*}+v^{*}\right\rangle-F_{1}(u)+F_{1}(v) \geq F_{2}(u)-F_{2}(v)
$$

Let $G(v)=-\left\langle v-u, u^{*}+v^{*}\right\rangle-F_{1}(u)+F_{1}(v)$ and define

$$
\begin{aligned}
& C_{1}=\{(v, a) \in V \times \mathbb{R}: G(v) \leq a\}=\mathrm{epi} G \\
& C_{1}=\left\{(v, a) \in V \times \mathbb{R}: F_{2}(u)-F_{2}(v) \geq a\right\}
\end{aligned}
$$

$\stackrel{\circ}{C}_{1} \neq \phi, \stackrel{\circ}{C}_{1} \cap C_{2}=\phi$ (If not, let $(v, a) \in \stackrel{\circ}{C}_{1} \cap C_{2}$. Then $G(v)<a$ and $\left.F_{2}(u)-F_{2}(v) \geq a\right)$. Therefore there exist $v^{*} \in V^{*}, \alpha, \beta \in \mathbb{R}$ such that

$$
\begin{array}{lll}
\left\langle v, v^{*}\right\rangle+\alpha a+\beta & \geq 0, & \forall \quad(v, a) \in C_{1} \\
\left\langle v, v^{*}\right\rangle+\alpha a+\beta & \leq 0, & \forall \quad(v, a) \in C_{2}
\end{array}
$$

Since $(u, 0) \in C_{1} \cap C_{2}$. Then $\left\langle u, v^{*}\right\rangle+\beta=0 \Rightarrow \beta=-\left\langle u, v^{*}\right\rangle$ and

$$
\begin{array}{llll}
\left\langle v-u, v^{*}\right\rangle+\alpha a & \geq 0, & \forall(v, a) \in C_{1} \\
\left\langle v, v^{*}\right\rangle+\alpha a & \leq 0, & \forall \quad(v, a) \in C_{2}
\end{array}
$$

We can show that $\alpha>0$. Now for $(v, G(v)) \in C_{1}$, we have

$$
\left\langle v-u, v^{*}\right\rangle+\alpha G(v) \geq 0 \Rightarrow G(v) \geq\left\langle v-u,-\frac{1}{\alpha} v^{*}\right\rangle
$$

That is

$$
-\left\langle v-u, u^{*}+v^{*}\right\rangle-F_{1}(u)+F_{1}(v) \geq\left\langle v-u,-\frac{1}{\alpha} v^{*}\right\rangle \Rightarrow F_{1}(v) \geq F_{1}(u)+\left\langle v-u, u^{*}-\frac{1}{\alpha} v^{*}\right\rangle
$$

Thus $u^{*}-\frac{1}{\alpha} v^{*} \in \partial F_{1}(u)$. On the other hand, for $\left(v, F_{2}(u)-F_{2}(v)\right) \in C_{2}$

$$
\left\langle v-u, v^{*}\right\rangle+\alpha\left(F_{2}(u)-F_{2}(v)\right) \leq 0 \Rightarrow F_{2}(v) \geq F_{2}(u)+\left\langle v-u, \frac{1}{\alpha} v^{*}\right\rangle
$$

Therefore $\frac{1}{\alpha} v^{*} \in \partial F_{2}(u)$ and so $u^{*} \in \partial F_{1}(u)+\partial F_{2}(u)$.

Proposition 28

$A: U \longrightarrow V$ is a continuous linear operator, $F \in \Gamma(V)$. If F is continuous and finite at $A u$, then

$$
\begin{gathered}
\partial F \circ A=A^{*} \partial F(A u) \\
\underset{u}{U} \underset{F \circ}{\rightarrow}{ }_{A u} \xrightarrow{F} \\
\mathbb{R}
\end{gathered}
$$

Proof. Suppose $u^{*} \in A^{*} \partial F(A u)$ and let $u^{*}=A^{*} v^{*}$ where $v^{*} \in \partial F(A u)$. Then

$$
F(v) \geq F(A u)+\left\langle v-A u, v^{*}\right\rangle, \quad \forall \quad v \in V
$$

In particular for $v=A w, w \in U$

$$
F(A w) \geq F(A u)+\left\langle A w-A u, v^{*}\right\rangle, \quad \forall \quad w \in U
$$

So,

$$
(F \circ A)(w) \geq(F \circ A)+\left\langle w-u, A^{*} v^{*}\right\rangle
$$

Therefore $A^{*} v^{*}=u^{*} \in \partial \partial(F \circ A)(u)$.
Conversely, let $u^{*} \in \partial(F \circ A)(u)$. Then

$$
(F \circ A)(v) \geq(F \circ A)(u)+\left\langle v-u, u^{*}\right\rangle, \quad \forall \quad v \in U
$$

Let $C_{1}=\left\{\left(A v,\left\langle v-u, u^{*}\right\rangle+F(A u)\right): v \in U\right\}$. Clearly C_{1} is convex and $C_{1} \cap \overbrace{\text { epi }}^{0}=\phi$. Hence there exist $v^{*} \in V^{*}, \alpha, \beta \in \mathbb{R}$ such that

$$
\left.\begin{array}{l}
\left\langle v, v^{*}\right\rangle+\alpha a+\beta \geq 0 \\
\left\langle v, v^{*}\right\rangle+\alpha a+\beta \leq 0
\end{array} \quad \forall(v, a) \in \mathrm{epi} F\right)
$$

Now for $(A u, F(A u)))$ we get

$$
\begin{array}{ll}
\left\langle A u, v^{*}\right\rangle+\alpha F(A u)+\beta & =0 \\
\beta & =-\left\langle A u, v^{*}\right\rangle-\alpha F(A u)
\end{array}
$$

So

$$
\begin{aligned}
& \left.\left\langle v-A u, v^{*}\right\rangle+\alpha(a-F(A u))\right) \\
& \langle v-A u, \\
& \left.\left\langle v-v^{*}\right\rangle+\alpha(a-F(A u))\right)
\end{aligned} \quad \leq 0 \quad \forall \quad(v, a) \in \operatorname{epi} F
$$

We can show in the same manner as before that $\alpha>0$. Since $\left(A v,\left\langle v-u, u^{*}\right\rangle+F(A u)\right) \in C_{1}$ we have

$$
\left\langle A v-A u, v^{*}\right\rangle+\alpha\left\langle v-u, u^{*}\right\rangle \leq 0 \Rightarrow\left\langle v-u, A^{*} v^{*}-\alpha u^{*}\right\rangle \leq 0 \quad \forall \quad \in V .
$$

Therefore $A^{*} v^{*}+\alpha u^{*}=0$ (since a linear functional that keeps the same sign for the whole space must be zero). So

$$
u^{*}=A^{*}\left(-\frac{1}{\alpha} v^{*}\right) \in A^{*} \partial F(A u)
$$

Which completes the proof.

11 Lecture 11

Minimization of Convex Functions and Variational Inequalities

Recall that:

1. a normed vector space X is called reflexive if $X=X^{* *}$.
2. A Banach space is reflexive if its unit ball is compact in the weak topology.
3. Hilbert spaces and L^{p} spaces $(1<p<\infty)$ are reflexive.

Let V be a reflexive Banach space (with norm $\|\|$) and $\phi \neq C$ is closed convex subset of V. The function $F: C \rightarrow \mathbf{R}$, is convex and $l . s . c$ and proper. $\hat{F}: V \rightarrow \overline{\mathbf{R}}$ is the convex extension of F to all V.

$$
\hat{F}(u)=\left\{\begin{array}{cc}
F(u) & \text { if } u \in C \\
+\infty & \text { if } u \notin C
\end{array}\right.
$$

\hat{F} is convex and l.s.c.
Consider the minimization problem:

$$
\begin{equation*}
\alpha=\inf _{v \in C} F(v)=\inf _{v \in V} \hat{F}(v) \tag{*}
\end{equation*}
$$

Definition 29

an element $u \in C$, s.t. $F(u)=\alpha$ is called a solution of the problem (*).
Proposition 30 (1)
The set of solution of (*) is closed and convex set (possibly empty).
Proof. Proof. Consider the set

$$
\{u \in V: \hat{F}(u) \leq \alpha\}
$$

since \hat{F} is convex and l.s.c the set is convex and closed.

Proposition 31 (2)

If C is bounded or F is coercive, then (*) has at least one solution. It has a unique solution if F is strictly convex.

Proof. Let $\left\{u_{n}\right\}$ be a sequence in C s.t.

$$
F\left(u_{n}\right) \rightarrow \alpha=\inf _{v \in C} F(v)
$$

- If C is bounded then $\left\{u_{n}\right\}$ is bounded.
- If F is coercive then $F\left(u_{n}\right) \rightarrow \alpha \neq \infty$, then $F\left(u_{n}\right)$ is bounded above, the subsequence $\left\{u_{n_{k}}\right\} \xrightarrow{\text { weakly }} u$.
- C is closed $\Rightarrow C$ is weakly closed $\Rightarrow u \in C$.
- F is convex and l.s.c $\Rightarrow F$ weakly l.s.c.
- $F\left(u_{n}\right) \leq \underline{\lim } F\left(u_{n}\right)=\lim F\left(u_{n}\right)=\alpha>$
- Then $F(u)=\alpha . u$ is a solution.

Consider $F: C \rightarrow \mathbf{R}, F^{\prime}$ exists, $u \in C$, The following are Equivalent:
(i)

$$
u \text { minimizes } F \text { on } C \text {. }
$$

(ii)

$$
<F^{\prime}(u), v-u>\geq 0 \quad \forall v \in C
$$

(iii)

$$
<F^{\prime}(v), v-u>\geq 0 \quad \forall v \in C
$$

Proof. (i) \Rightarrow (ii)
$<F^{\prime}(u), v-u>=\lim _{\beth \rightarrow 0} \frac{F(u+\mathrm{J}(v-u))-F(u)}{\beth} \geq 0$ (ii) \Rightarrow (iii)

$$
\begin{aligned}
& F(u) \geq F(v)+<F^{\prime}(v), u-v> \\
& F(v) \geq F(u)+<F^{\prime}(u), v-u>
\end{aligned}
$$

Adding them

$$
\begin{gathered}
0 \geq<F^{\prime}(v), u-v>+<F^{\prime}(u), v-u> \\
<F^{\prime}(v), v-u>\geq<F^{\prime}(u), v-u>\geq 0
\end{gathered}
$$

(iii) \Rightarrow (ii)

$$
\begin{gathered}
F(v) \geq F(\beth u+(1-\beth) v)+<F^{\prime}(\beth u+(1-\beth) v), \beth(v-u)> \\
=F(\beth u+(1-\beth) v)+\frac{\beth}{1-\beth}<F^{\prime}(\beth u+(1-\beth) v),(1-\beth)(v-u)> \\
\geq F(\beth u+(1-\beth) v)=\phi(\beth) \\
F(v) \geq \phi(1)=F(u) \\
\Rightarrow F(u) \text { is a minimum. }
\end{gathered}
$$

REMARK 33

$F(u)=a(u, u)-2<l, v>$

- $a(.,$.$) is continuous bilinear form (|a(u, v)| \leq\|u\|\|v\|)$,
- $a(u, u) \geq \gamma\|u\|^{2}, \gamma>0$.
- $l \in V^{*}$ (continuous linear functional)
- F is strictly convex, Coercive, Then F has a unique minimum.
- if $u \neq v$

$$
\begin{gathered}
a(u, v)+a(v, u)<a(u, u)+a(v, v) \\
0<a(u-v, u-v)
\end{gathered}
$$

- F is strictly convex, $u \neq v, \lambda \in(0,1)$,

$$
\begin{gathered}
F(\beth u+(1-\beth) v)=a(\beth u+(1-\beth) v, \beth u+(1-\beth) v-2<l, \beth u+(1-\beth) v> \\
=\beth^{2} a(u, u)+\beth(1-\beth)(a(u, v)+a(v, u))+(1-\beth)^{2} a(v, v) \\
-2 \beth<l, u>-2(1-\beth)<l, v> \\
<\beth^{2} a(u, u)+\beth(1-\beth)\left(a(u, u)+a(v, u)+(1-\beth)^{2} a(v, v)\right. \\
-2 \beth<l, u>-2(1-\beth)<l, v> \\
=\beth a(u, u)+\beth(1-\beth) a(v, v)-2 \beth<l, u>-2(1-\beth)<l, v> \\
\Rightarrow F \text { is strictly convex }
\end{gathered}
$$

- F is coercive,

$$
\begin{gathered}
F(u)=a(u, u)-2<l, u> \\
\geq \gamma\|u\|^{2}-2<l, u> \\
\geq \gamma\|u\|^{2}-2\|l\|\|u\| \rightarrow \infty, \text { as }\|u\| \rightarrow \infty
\end{gathered}
$$

Then we have a unique minima.

- If F is considered on a bounded set C, then we only required $a(u, u)>0$.

12 Lecture 12

Assumptions : V is a reflexive Banach space, $\varnothing \neq C \subseteq V$ is closed and convex, $F: C \longrightarrow \mathbb{R}$ convex and lower simicontinuous.
Result: under the above assumptions if C is bounded or F is coercive, $a(u, u)$ is a bilinear continuous form satisfiying
$a(u, u) \geq \gamma\|u\|^{2}, \gamma>0, l \in V^{*}$, then $F(u)=a(u, u)-2\langle l, u\rangle$ has a unique minimazer.
Proposition1: If $F: \varnothing \neq C \longrightarrow \mathbb{R}$ covex, F^{\prime} exists on $C, u \in C$. TFAE
(i) u minimize F on C
(ii) $\left\langle F^{\prime}(u), v-u\right\rangle \geq 0$ for all $u \in C$
(iii) $\left\langle F^{\prime}(v), v-u\right\rangle \geq 0$ for all $v \in C$

Finding the derivitive of $F(u)=a(u, u)-2\langle l, u\rangle$, indeed;

$$
\begin{aligned}
\lim _{\lambda \rightarrow 0^{+}} \frac{F(u+\lambda v)-F(u)}{\lambda} & =\lim _{\lambda \rightarrow 0^{+}} \frac{a(u+\lambda v, u+\lambda v)-2\langle l, u+\lambda v\rangle-a(u, u)+2\langle l, u\rangle}{\lambda} \\
& =\lim _{\lambda \rightarrow 0^{+}} \frac{a(u, u)+\lambda a(u, v)+\lambda a(v, u)+\lambda^{2} a(v, v)-2\langle l, u\rangle-2 \lambda\langle l, v\rangle-a(u, u)+2\langle l, u\rangle}{\lambda} \\
& =\lim _{\lambda \longrightarrow 0^{+}} \frac{\lambda a(u, v)+\lambda a(v, u)+\lambda^{2} a(v, v)-2 \lambda\langle l, v\rangle}{\lambda}
\end{aligned}
$$

$\Rightarrow\left\langle F^{\prime}(u), v\right\rangle=a(v, u)+a(u, v)-2\langle l, v\rangle$
Remark: if $a(u, u)$ is symmetric, then $\left\langle F^{\prime}(u), v\right\rangle=2 a(u, v)-2\langle l, v\rangle$
Characterization of the minimizer
$u \in C$ minimizes F iff
(i) $a(u, v-u)-\langle l, v-u\rangle \geq 0$
(ii) $a(v, v-u)-\langle l, v-u\rangle \geq 0$
proposition 2: let $F_{1}, F_{2}: C \longrightarrow \mathbb{R}$ be convex functions, C convex, F_{1}^{\prime} exists, $u \in C$, TFAE
(i) u minimizes $F=F_{1}+F_{2}$
(ii) $\left\langle F_{1}^{\prime}(u), v-u\right\rangle+F_{2}(v)-F_{2}(u) \geq 0 \quad$ for all $v \in C$
(iii) $\left\langle F_{1}^{\prime}(v), v-u\right\rangle+F_{2}(v)-F_{2}(u) \geq 0 \quad$ for all $v \in C$
proof
(i) \Longrightarrow (ii)
$0 \leq \frac{\left.F_{1}(1-\lambda) u+\lambda v\right)-F_{1}(u)}{\lambda}+\frac{F_{2}((1-\lambda) u+\lambda v)-F_{2}(u)}{\lambda} \leq \frac{F_{1}(u+\lambda(v-u))-F_{1}(u)}{\lambda}+\frac{(1-\lambda) F_{2}(u)+\lambda F_{2}(v)-F_{2}(u)}{\lambda} \leq \frac{F_{1}(u+\lambda(v-u))-F_{1}(u)}{\lambda}+$ $F_{2}(v)-F_{2}(u)$ by taking the limit as $\quad \lambda \longrightarrow 0^{+}$we get (ii)
(ii) \Longrightarrow (iii) using the convexity of F_{1}
$F_{1}(v) \geq F_{1}(u)+\left\langle F_{1}^{\prime}(u), v-u\right\rangle$
$F_{1}(u) \geq F_{1}(v)+\left\langle F_{1}^{\prime}(v), u-v\right\rangle$ by adding these two inequlities we obtain
$0 \geq\left\langle F_{1}^{\prime}(u), v-u\right\rangle+\left\langle F_{1}^{\prime}(v), u-v\right\rangle \Longrightarrow\left\langle F_{1}^{\prime}(v), v-u\right\rangle \geq\left\langle F_{1}^{\prime}(u), v-u\right\rangle \Longrightarrow\left\langle F_{1}^{\prime}(v), v-u\right\rangle+F_{2}(v)-F_{2}(u) \geq$ $\left\langle F_{1}^{\prime}(u), v-u\right\rangle+F_{2}(v)-F_{2}(u) \geq 0$
(iii) \Longrightarrow (i)
since C is convex $\Longrightarrow \lambda u+(1-\lambda) v \in C, \lambda \in(0,1)$ using (iii) we have
$\left\langle F_{1}^{\prime}(\lambda u+(1-\lambda) v),(1-\lambda)(v-u)\right\rangle+F_{2}(\lambda u+(1-\lambda) v)-F_{2}(u) \geq 0 \Longrightarrow$ (by using the convexity of F_{2}) $(1-\lambda)\left\langle F_{1}^{\prime}(\lambda u+(1-\lambda) v),(v-u)\right\rangle+(1-\lambda)\left(F_{2}(v)-F_{2}(u)\right) \geq 0$ (dividinig by $\left.(1-\lambda)\right)$ we have $\left\langle F_{1}^{\prime}(\lambda u+(1-\lambda) v),(v-u)\right\rangle+F_{2}(v)-F_{2}(u) \geq 0 \Longrightarrow\left\langle F_{1}^{\prime}(\lambda u+(1-\lambda) v),(v-u)\right\rangle \geq F_{2}(u)-F_{2}(v)$ but $F_{1}(v) \geq F_{1}(\lambda u+(1-\lambda) v)+\left\langle F_{1}^{\prime}(\lambda u+(1-\lambda) v), \lambda(v-u)\right\rangle \geq F_{1}(\lambda u+(1-\lambda) v)+\lambda\left(F_{2}(u)-F_{2}(v)\right) \Longrightarrow$ $F_{1}(v)+\lambda F_{2}(v) \geq F_{1}(\lambda u+(1-\lambda) v)+\lambda F_{2}(u)\left(\right.$ by letting $\left.\lambda \longrightarrow 1^{-}\right)$we get $F_{1}(v)+F_{2}(v) \geq F_{1}(u)+F_{2}(u) \Longrightarrow$ $F(v) \geq F(u)$
which completes the proof.
Example1: Proximity Mapping

Let V be a Hilbert space, $x \in V, \varphi \in \Gamma_{0}(V)$. Define $F(u)=\frac{1}{2}\|u-x\|^{2}+\varphi(u)$. set $F_{1}(u)=\frac{1}{2}\|u-x\|^{2}$ and $F_{2}(u)=\varphi(u)$
i) F is strictly convex since F_{1} is strictly convex.
ii) F is coercive, indeed; since $\varphi \in \Gamma_{0}(V)$, there exists a $l \in V^{*}, \alpha \in \mathbb{R}$ such that $\varphi(u) \geq\langle l, u\rangle+\alpha \Longrightarrow F(u) \geq$ $\frac{1}{2}\|u-x\|^{2}+\langle l, u\rangle+\alpha \Longrightarrow$
$\stackrel{F}{F}(u) \geq \frac{1}{2}(\|u\|-\|x\|)^{2}-\|l\|\|u\|-|\alpha| \Longrightarrow F(u) \longrightarrow \infty$ as $u \longrightarrow \infty$. hence F is coercive. By proposition $1 F$ has a unique minimazer.
Evaluating the derevitive of $F_{1}(u)$.
$F_{1}^{\prime}(u)=\lim _{\lambda \longrightarrow 0^{+}} \frac{F_{1}(u+\lambda v)-F_{1}(u)}{\lambda}=\lim _{\lambda \longrightarrow 0^{+}} \frac{\frac{1}{2}\|u+\lambda v-x\|^{2}-\frac{1}{2}\|u-x\|^{2}}{\lambda}=\lim _{\lambda \longrightarrow 0^{+}} \frac{\frac{1}{2}\|u-x\|^{2}+\lambda\langle u-x, v\rangle+\frac{1}{2} \lambda^{2}\|v\|-\frac{1}{2}\|u-x\|^{2}}{\lambda}=\langle u-x, v\rangle$
by using proposition 2: u is a minimizer if and only if
i) $\langle u-x, v-u\rangle+\varphi(v)-\varphi(u) \geq 0$ and ii) $\langle v-x, v-u\rangle+\varphi(v)-\varphi(u) \geq 0$.

Special case: if C is a non empty closed convex subset of $V, x \in v$
Define $F(u)=\frac{1}{2}\|u-x\|^{2} \Longrightarrow \widetilde{F}(u)=\frac{1}{2}\|u-x\|^{2}+\chi_{c}(u)$ by using the above arqument we have $\langle u-x, v-u\rangle+\chi_{c}(v)-\chi_{c}(u) \geq 0$ and $\langle v-x, v-u\rangle+\chi_{c}(v)-\chi_{c}(u) \geq 0 \Longrightarrow$
$\langle u-x, v-u\rangle \geq 0$ for all $v \in C$ and $\langle v-x, v-u\rangle \geq 0$ for all $v \in C$. the mapping $x \longrightarrow u$ is called aproximity mapping and we write
u-prox x.

13 Lecture 13

The Direct Study of Certain Variational Inequalities

$\langle A u-f, v-u\rangle+\Phi(v)-\Phi(u) \geq 0 . \forall v \in V$ where V is a reflexive Banach space, $\mathrm{A}: \mathrm{V} \rightarrow \mathrm{V}^{*}$, where $\mathrm{f} \in \mathrm{V}^{*}$ is given and $\Phi: V \rightarrow \overline{\bar{R}}$.
i) Φ is proper, lsc and convex.
ii) A is weakly continous on finite dimensional subspaces of V .
iii) A is a monotone. i.e. $\langle A u-A v, u-v\rangle \geq 0 . \forall u, v \in V$.
iv) A is coercieve: $\exists v_{0} \in V$ such that: $\frac{\left\langle A v, v-v_{0}\right\rangle+\Phi(v)}{\|v\|} \rightarrow \infty \quad$ as $\|v\| \rightarrow \infty$.

Problem:
Find $\mathbf{u} \in \mathrm{V}$ such that $\langle A u-f, v-u\rangle+\Phi(v)-\Phi(u) \geq 0 . \forall v \in V \quad$ (call this *).

Theorem:

Problem (*) has at least one solution.

Proof:

step (1):
Assume V is finite dimensional (FD) and (dom Φ) is bounded. Also we assume here that V has a Hilbert space structure).
(*) may be rewritten as follows:
$\langle u-(u-A u+f), v-u\rangle+\Phi(v)-\Phi(u) \geq 0 . \forall v \in V$
where $u=\operatorname{Prox}_{\Phi}(u-A u+f)$
Define T:V $\rightarrow \operatorname{dom} \Phi \subseteq \operatorname{cl}(\operatorname{dom} \Phi)$ by
Tu: $\operatorname{Prox}_{\Phi}(u-A u+f)$
The idea here is to show that T has a fixed point. If we can show that $\operatorname{Prox}_{\Phi}: V \rightarrow \operatorname{dom} \Phi$ is continuous then T has a fixed point by Brouwer's fixed point theorem. For that let $\mathrm{f}_{1}, \mathrm{f}_{2} \in V, \mathbf{u}_{1}=\operatorname{Prox} \boldsymbol{x}_{\Phi} \mathrm{f}_{1}, \mathrm{u}_{2}=\operatorname{Prox} \boldsymbol{x}_{\Phi}$ f_{2} then:
$\left\langle u_{1}-f_{1}, v-u\right\rangle+\Phi(v)-\Phi(u) \geq 0$
$\left\langle u_{2}-f_{2}, v-u\right\rangle+\Phi(v)-\Phi(u) \geq 0$
$\left\langle u_{1}-f_{1}, u_{2}-u_{1}\right\rangle+\Phi\left(u_{2}\right)-\Phi\left(u_{1}\right) \geq 0$
$\left\langle u_{2}-f_{2}, u_{1}-u_{2}\right\rangle+\Phi\left(u_{1}\right)-\Phi\left(u_{2}\right) \geq 0$ by summing the last two inequalities we get:
$\left\langle\left(u_{1}-f_{1}\right)-\left(u_{2}-f_{2}\right), u_{2}-u_{1}\right\rangle \geq 0$ or by rearranging:
$\left\langle\left(u_{1}-u_{2}\right)-\left(f_{1}-f_{2}\right), u_{2}-u_{1}\right\rangle \geq 0 \Longrightarrow$
$\left\|u_{2}-u_{1}\right\|^{2} \leq-\left\langle f_{1}-f_{2}, u_{2}-u_{1}\right\rangle \leq\left\|f_{1}-f_{2}\right\|\left\|u_{2}-u_{1}\right\| \Longrightarrow\left\|u_{2}-u_{1}\right\| \leq\left\|f_{1}-f_{2}\right\|$
Therefore it is continous and so T has a fixed point $u \in \operatorname{cl}(\operatorname{dom} \Phi)$ and because $u=\mathrm{Tu} \in \operatorname{dom} \Phi$ since range T is in $\operatorname{dom} \Phi$
$\therefore(*)$ has a solution.

Step (2):

Now assume only that V is FD.
For $\mathrm{n}=1,2,3, \ldots .$, define $\Phi_{n}(u)=\left\{\begin{array}{cc}\Phi(u) & \text { if }\|u\| \leq n \\ \infty & \text { if }\|u\| \supsetneqq n\end{array}\right.$
Note that $\operatorname{dom} \Phi_{n} \subseteq \overline{B(0 . n)}$.
By step (1) the problem $\langle A u-f, v-u\rangle+\Phi_{n}(v)-\Phi_{n}(u) \geq 0$ has a solution $u_{n} \in \operatorname{dom} \Phi_{n} \subseteq \overline{B(0 . n)}$
i.e. $\left\langle A u_{n}-f, v-u_{n}\right\rangle+\Phi_{n}(v)-\Phi_{n}\left(u_{n}\right) \geq 0$. $\forall v \in V$.

Now calaim that $\left\{u_{n}\right\}$ is bounded. If we assume not then we have:
$\left\langle A u_{n}-f, v_{\circ}-u_{n}\right\rangle+\Phi_{n}\left(v_{\circ}\right)-\Phi\left(u_{n}\right) \geq 0\left(\right.$ note here that $\Phi_{n}\left(u_{n}\right)=\Phi\left(u_{n}\right)$ since $\left\|u_{n}\right\| \leq n$) $\Rightarrow\left\langle A u_{n}, u_{n}-v_{\circ}\right\rangle+\Phi\left(u_{n}\right) \leq \Phi_{n}\left(v_{\circ}\right)-\left\langle f, v_{\circ}-u_{n}\right\rangle$
note here that for sufficiently large $n \geq\left\|v_{\circ}\right\|$, we have $\Phi_{n}\left(v_{\circ}\right)=\Phi\left(v_{\circ}\right)$ and so
$\left\langle A u_{n}, u_{n}-v_{\circ}\right\rangle+\Phi\left(u_{n}\right) \leq \Phi\left(v_{\circ}\right)-\left\langle f, v_{\circ}-u_{n}\right\rangle$ and by dividing every thing by $\left\|u_{n}\right\|$ we get:
$\frac{\left\langle A u_{n}, u_{n}-v_{\circ}\right\rangle+\Phi\left(u_{n}\right)}{\left\|u_{n}\right\|} \leq \frac{\Phi\left(v_{\circ}\right)}{\left\|u_{n}\right\|}+\|f\|\left(1+\frac{\left\|v_{\circ}\right\|}{\left\|u_{n}\right\|}\right) \quad$ which $\rightarrow\|f\| \nsupseteq \infty$ as $\left\|u_{n}\right\| \rightarrow \infty$ and this of course conradicts the coercevity. Hence, $\left\{u_{n}\right\}$ is bounded.

Now, since $\left\{u_{n}\right\}$ is bounded in a FD space, there exists a subsequence $\left\{u_{n_{j}}\right\}$ and a $u \in V$ such that $u_{n_{j}} \rightarrow u$ and ($A_{u_{j}} \rightarrow A_{u}$ by continuity of A).
Letting $v \in V \Rightarrow\left\langle A u_{n_{j}}-f, v-u_{n_{j}}\right\rangle+\Phi_{n_{j}}(v)-\Phi\left(u_{n_{j}}\right) \geq 0$
Then for sufficiently large n_{j} with $\|v\| \leq n_{j}$ we have $\Phi_{n_{j}}(v)=\Phi(v)$
\therefore taking the limit of both sides as $j \rightarrow \infty$ we get
$\langle A u-f, v-u\rangle+\Phi(v)-\Phi(u) \geq 0$ and this completes the proof.
Remark:
If $A u_{n} \rightarrow A u$ then $\left\langle A u_{n}, u\right\rangle \rightarrow\langle A u, u\rangle$ but it not always true that $\left\langle A u_{n}, u_{n}\right\rangle \rightarrow\langle A u, u\rangle$ whenever $u_{n} \rightarrow u$.Acutually
this can not happen unless we impose the conition of boundedness on either $A u_{n}$ or u_{n}. Note on the following:
$\left\langle A u_{n}, u_{n}\right\rangle=\left\langle A u_{n}, u-u+u_{n}\right\rangle=\left\langle A u_{n}, u\right\rangle+\left\langle A u_{n}, u_{n}-u\right\rangle \rightarrow\langle A u, u\rangle+\left\langle A u_{n}, u_{n}-u\right\rangle$
But $\left|\left\langle A u_{n}, u_{n}-u\right\rangle\right| \leq\left\|A u_{n}\right\|\left\|u_{n}-u\right\| \ldots . .(* *)$
And since $\left\|u_{n}-u\right\| \rightarrow 0$ as $u_{n} \rightarrow u$ then the r.h.s of $\left({ }^{* *}\right)$ will not vanished unless $\left\|A u_{n}\right\|$ is bounded. Similar argument can be done on $A u_{n}$ to have u_{n} being bouned.

14 Lecture 14

The Direct Study of Certain Variational Inequalities (continue)

$\langle A u-f, v-u\rangle+\Phi(v)-\Phi(u) \geq 0 . \forall v \in V$ where V is a reflexive Banach space, $A: V \rightarrow V *$, where $f \in V *$ is given and $\Phi: V \rightarrow \bar{R}$.
i) Φ is proper, lsc and convex.
ii) A is weakly continuous on finite dimensional subspaces of V.
iii) A is a monotone. i.e. $\langle A u-A v, u-v\rangle \geq 0 . \forall u, v \in V$.
iv) A is coercive: $\exists v_{0} \in V$ such that: $\frac{\left\langle A v, \bar{v}-v_{\circ}\right\rangle+\Phi(v)}{\|v\|} \rightarrow \infty \quad$ as $\|v\| \rightarrow \infty$.

Problem:

Find $u \in V$ such that $\langle A u-f, v-u\rangle+\Phi(v)-\Phi(u) \geq 0 . \forall v \in V \quad$ (call this *).

Theorem 34 Problem (*) has at least one solution.

Proof:

step (3):
Assume V is of infinite dimension i.e. $\operatorname{dim} V=\infty$
Let $\left\{V_{n}\right\}_{n=1}^{\infty}$ be a sequence of FD subspaces of V containing v_{\circ} that satisfies $\frac{\left\langle A v, v-v_{\circ}\right\rangle+\Phi(v)}{\|v\|} \rightarrow \infty$
as $\|v\| \rightarrow \infty$ where $V_{n} \subseteq V_{n+1}$ and $\bigcup_{n=1}^{\infty} V_{n}$. (Note here that having $\left\{V_{n}, n=1,2,3, \ldots\right\}$ being just a family of
subspaces is not enough to have such v_{\circ} in all of $V_{i}, i=1,2,3, \ldots$)
Now, for each $n \exists \mathbf{a} u_{n} \in V_{n}$ s.t.
$\left\langle A u_{n}-f, v-u_{n}\right\rangle+\Phi(v)-\Phi\left(u_{n}\right) \geq 0 . \forall v \in V_{n}$
and by the discussion made before about the coercivity of A , we have $\left\{u_{n}\right\}$ is bounded.
$\therefore u_{n} \rightharpoonup u_{\circ}$ for some $u_{\circ} \in V$.

Digression to investigate monotonicity:

$\langle A u-A v, u-v\rangle \geq 0$
$\Rightarrow\langle A u, u-v\rangle \geq\langle A v, u-v\rangle$
By putting $u=u_{m}, v=u_{\circ}$, we get $\left\langle A u_{m}, u_{m}-u_{\circ}\right\rangle \geq\left\langle A u_{\circ}, u_{m}-u_{\circ}\right\rangle$, and by taking the lim of both

Also, we already have: $\left\langle A u_{n}-f, v-u_{n}\right\rangle+\Phi(v)-\Phi\left(u_{n}\right) \geq 0$.
so, by fixing n and letting $m \geq n$ we have:
$\left\langle A u_{m}-f, v-u_{m}\right\rangle+\Phi(v)-\Phi\left(u_{m}\right) \geq 0 \Rightarrow$
$\Phi(v)-\Phi\left(u_{m}\right) \geq\left\langle f, v-u_{m}\right\rangle+\left\langle A u_{m}, u_{m}-v\right\rangle$. \qquad (****)

Note here that
i) since Φ lsc and convex then $\Phi\left(u_{\circ}\right)=\underset{n \rightarrow \infty}{\lim _{n}} \Phi\left(u_{n}\right)$.
ii) $\varlimsup\left(-\Phi\left(u_{n}\right)\right)=-\underline{\lim } \Phi\left(u_{n}\right)$
iii) $\overline{\lim }\left(a-\Phi\left(u_{n}\right)\right)=\overline{\overline{\lim }}\left(a+\left(-\Phi\left(u_{n}\right)\right)=a+\overline{\lim }\left(-\Phi\left(u_{n}\right)\right)=a-\underline{\lim } \Phi\left(u_{n}\right)\right.$
$\Phi(v)-\Phi\left(u_{\circ}\right) \geq\left\langle f, v-u_{\circ}\right\rangle+\overline{\lim }\left\langle A u_{m}, u_{m}-v\right\rangle$.
Note here that $\overline{\lim }$ of LHS of $(* * * *)=\overline{\lim }\left(\Phi(v)-\Phi\left(u_{m}\right)\right)=\Phi(v)-\underline{\lim } \Phi\left(u_{m}\right)=\Phi(v)-\Phi\left(u_{\circ}\right)$.
Also, since n is arbitrary, we have the above inequality is true for all n.
Let $v \in V$ and let $v_{n} \rightarrow v$ then
$\Phi\left(v_{n}\right)-\Phi\left(u_{\circ}\right) \geq\left\langle f, v_{n}-u_{\circ}\right\rangle+\overline{\lim }\left\langle A u_{m}, u_{m}-v_{n}\right\rangle$.
Take \underline{l} for both side as $n \rightarrow \infty$ we get:
$\Phi(v)-\Phi\left(u_{\circ}\right) \geq\left\langle f, v-u_{\circ}\right\rangle+\underset{n}{\lim _{n}} \varlimsup_{m}\left\langle A u_{m}, u_{m}-v_{n}\right\rangle$

$$
\geq\left\langle f, v-u_{\circ}\right\rangle+\varlimsup_{m} \frac{\varliminf_{i m}}{n}\left\langle A u_{m}, u_{m}-v_{n}\right\rangle
$$

$$
=\left\langle f, v-u_{\circ}\right\rangle+\varlimsup_{m}\left\langle A u_{m}, u_{m}-v\right\rangle \forall v \in V .
$$

Now, if we let $v=u_{\circ}$ in the above inequality (since it is true $\forall v \in V$) we have:

$$
\begin{array}{ll}
& 0 \geq \varlimsup_{m}\left\langle A u_{m}, u_{m}-u_{\circ}\right\rangle \\
\Rightarrow & 0 \geq \varlimsup_{m}\left\langle A u_{m}, u_{m}-u_{\circ}\right\rangle \geq \underline{\lim }\left\langle A u_{m}, u_{m}-u_{\circ}\right\rangle \geq 0(\operatorname{by}(* * *) \text { above }) \geq \varlimsup \overline{\lim }\left\langle A u_{m}, u_{m}-u_{\circ}\right\rangle . \\
\therefore \quad & \lim \left\langle A u_{m}, u_{m}-u_{\circ}\right\rangle=0 \ldots \ldots \ldots . .(* * * * *)
\end{array}
$$

By going back to monotonicity of A i.e. $\langle A u, u-v\rangle \geq\langle A v, u-v\rangle$ and letting $u=u_{m}, v=(1-\alpha) u_{\circ}+\alpha w$ then

$$
\begin{aligned}
u_{m}-v & =u_{m}-(1-\alpha) u_{\circ}-\alpha w \\
& =u_{m}-u_{\circ}+\alpha\left(u_{\circ}-w\right) \\
& =(1-\alpha)\left(u_{m}-u_{\circ}\right)+\alpha\left(u_{m}-w\right)
\end{aligned}
$$

and so

$$
\begin{aligned}
& \left\langle A u_{m},(1-\alpha)\left(u_{m}-u_{\circ}\right)+\alpha\left(u_{m}-w\right)\right\rangle \geq\left\langle A v, u_{m}-u_{\circ}+\alpha\left(u_{\circ}-w\right)\right\rangle \\
\Rightarrow \quad & \left.(1-\alpha)\left\langle A u_{m},\left(u_{m}-u_{\circ}\right)\right\rangle+\alpha\left(A u_{m}, u_{m}-w\right)\right\rangle \geq\left\langle A v, u_{m}-u_{\circ}\right\rangle+\alpha\left\langle A v, u_{\circ}-w\right\rangle
\end{aligned}
$$

taking lim for both sides gives:

$$
\begin{aligned}
& \overline{\underline{\lim }}\left\langle\left(A u_{m}, u_{m}-w\right)\right\rangle \geq \alpha \underline{\lim }\left\langle A v, u_{\circ}-w\right\rangle \text { or: } \\
& \underline{\varliminf}\left\langle\left(A u_{m}, u_{m}-w\right)\right\rangle \geq \underline{\lim }\left\langle A v, u_{\circ}-w\right\rangle \quad \text { and by taking } \lim _{\alpha \rightarrow 0} \Rightarrow \text { (by using the continuity } v \rightarrow u_{\circ} \text { as }
\end{aligned}
$$ $\alpha \rightarrow 0$

we have $v \rightharpoonup u_{\circ}$ and so $A v \rightharpoonup A u_{\circ}$).

$$
\overline{\lim }\left\langle A u_{m}, u_{m}-w\right\rangle \geq \underline{\lim }\left\langle A u_{m}, u_{m}-w\right\rangle \geq\left\langle A u_{\circ}, u_{\circ}-w\right\rangle \quad \forall w \in V
$$

and by (${ }^{* * * * *) ~ w e ~ h a v e: ~}$

$$
\begin{aligned}
& \Phi(w)-\Phi\left(u_{\circ}\right) \geq\left\langle f, w-u_{\circ}\right\rangle+\left\langle A u_{\circ}, u_{\circ}-w\right\rangle \quad \text { or } \\
& \left\langle A u_{\circ}-f, w-u_{\circ}\right\rangle+\Phi(w)-\Phi\left(u_{\circ}\right) \geq 0
\end{aligned}
$$

i.e. it has a solution

Special Cases:

case (1):
$A: C \subseteq V \rightarrow V^{*} . C$ is closed and convex. A is a monotone, weakly continuous on a FD subset of C and coercive. Then, there exists a $u \in C$ such that $\langle A u-f, v-u\rangle \geq 0$

proof:

By extending A to the whole space as
$\bar{A} u=\left\{\begin{array}{lll}A u & \text { if } & u \in C \\ \infty & \text { if } & u \notin C\end{array}\right.$
and by using Φ being the indicator function on C, we have the result directly by the previous theorem.
$A: V \rightarrow V^{*}$ with same assumption as above i.e. monotone.,,etc. $\Rightarrow \exists u \in V$ s.t. $A u=f$ proof:

By putting $V=C$ in case (1) and letting $v=u+w$ and so $v-u=w$ we get:
$\langle A u-f, w\rangle \geq 0 \quad \forall w \in V^{*} \Rightarrow$
$\langle A u-f,-w\rangle \geq 0 \quad \Rightarrow$
$\langle A u-f, w\rangle=0 \quad \forall w \in V^{*} \Rightarrow$
$A u=f$
case (3):
$A: V \rightarrow V^{*}$ where V is a Hilbert space with $V=V^{*} . A$ is linear and bounded with $\langle A u, u\rangle \geq \alpha\|u\|^{2}$. Then given $f \in V$, there exists a unique $u \in V$ s.t. $A u=f$.

proof:

Note here that a bounded operator is continuous iff it is weakly continuous.
Monotonicity of A:

$$
\langle A u-A v, u-v\rangle=\langle A(u-v), u-v\rangle \geq \alpha\|u-v\|^{2} \geq 0
$$

Coercivity of A:

$$
\frac{\langle A u, u\rangle}{\|u\|} \geq \frac{\alpha\|u\|^{2}}{\|u\|}=\alpha\|u\| \rightarrow \infty \quad \text { as } \quad\|u\| \rightarrow \infty
$$

So, by case (2) the existence is obtained. The uniqueness of u is obtained easily $\langle A u, u\rangle \geq \alpha\|u\|^{2}$ Assume $\exists u_{1}, u_{2}$ such that $A u_{1}=f=A u_{2}$. Then:

$$
\begin{aligned}
& \left\langle A u_{1}-A u_{2}, u_{1}-u_{2}\right\rangle=\left\langle A\left(u_{1}-u_{2}\right), u_{1}-u_{2}\right\rangle \geq \alpha\left\|u_{1}-u_{2}\right\|^{2} \Rightarrow \\
& 0=\left\langle f-f, u_{1}-u_{2}\right\rangle \geq \alpha\left\|u_{1}-u_{2}\right\|^{2} \forall \alpha \Rightarrow \\
& 0=u_{1}-u_{2} \Rightarrow u_{1}=u_{2} \quad \text { i.e. } u \text { is unique. }
\end{aligned}
$$

15 Lecture 15

Duality in convex optimization

Setting: V, Y are topological vector spaces, V^{*}, Y^{*} are their dual, $F: V \longrightarrow \mathbb{R}$ and

$$
\begin{equation*}
\inf _{u \in V} F(u) \tag{P}
\end{equation*}
$$

- The inf for problem (P) will be denoted by inf P.
- A solution of (P) is any $u \in V$ such that $F(u)=\inf P$.
- Problem (P) is called nontrivial if $\exists u_{0} \in V$ such that $F\left(u_{0}\right)<\infty$. If $F \in \Gamma_{0}(V)$, then (P) is nontrivial.

Suppose $\Phi: V \times Y \longrightarrow \mathbb{R}$ such that $\Phi(u, 0)=F(u)$. The problem

$$
\left(P_{p}\right) \quad \inf _{u \in V} \Phi(u, p)
$$

is called the perturbed prolem of (P) with respect to $\Phi\left(P_{0}=P\right)$. The problem

$$
\left(P^{*}\right) \quad \sup _{p^{*} \in Y^{*}}\left\{-\Phi\left(0, p^{*}\right)\right\}
$$

is called the dual of (P) with respect to Φ^{2}.

Proposition 35

$$
-\infty \leq \sup P^{*} \leq \inf P \leq \infty
$$

Proof. $\sup P^{*}=\sup _{p^{*} \in V^{*}}\left\{-\Phi^{*}\left(0, p^{*}\right)\right\}$

$$
\begin{aligned}
\Phi^{*}\left(0, p^{*}\right) & =\sup _{(u, p) \in V \times Y)}\left\{\left\langle p, p^{*}\right\rangle-\Phi(u, p)\right\} \\
& \geq \sup _{u \in V}-\Phi(u, 0) \\
& =-\inf _{u \in V} F(u)
\end{aligned}
$$

So, $\sup P^{*} \leq \inf P$.

Proposition 36

If P is nontrivial then

$$
-\infty \leq \sup P^{*} \leq \inf P<\infty
$$

If P^{*} is nontrivial then

$$
-\infty<\sup P^{*} \leq \inf P \leq \infty
$$

If P and P^{*} are nontrivial then

$$
-\infty<\sup P^{*} \leq \inf P<\infty
$$

```
\({ }^{2} \Phi: V \times Y \longrightarrow \mathbb{R},\left\langle\left(v^{*}, p^{*}\right),(v, p)\right\rangle=\left\langle v, v^{*}\right\rangle+\left\langle p, p^{*}\right\rangle\)
    \(\Phi^{*}\left(v^{*}, p^{*}\right)=\sup _{(v, p) \in V \times Y}\left\langle\left(v^{*}, p^{*}\right),(v, p)\right\rangle-\Phi(u, p)=\sup _{(v, p) \in V \times Y}\left\langle v, v^{*}\right\rangle+\left\langle p, p^{*}\right\rangle-\Phi(u, p)\)
```


Reiteration of duality

The problem

$$
\left(P_{u^{*}}^{*}\right) \quad \sup _{p^{*} \in Y^{*}}\left\{-\Phi\left(u^{*}, p^{*}\right)\right\}
$$

is called the associated perturbed problem of P^{*}. The bidual problem

$$
\left(P^{* *}\right) \quad \inf _{u \in V}\left\{\Phi^{* *}(u, 0)\right\}
$$

This process terminates. Indeed, $P^{* * *}=P^{*}$.

- If $P^{* *}=P\left(Q^{* *}=Q\right)$, then P, P^{*} are the dual of each other.
- If $\Phi \in \Gamma(V, Y)$ then $P^{* *}=P$ and P is nontrivial.

Normal problems and stable problems

$\Phi \in \Gamma_{0}(V \times Y)$ define $h(p)=\inf P_{p}=\inf \Phi(u, p)$.

Lemma 37

$h: Y \longrightarrow \mathbb{R}$ is convex.
Proof. Let $p, q \in Y$ and $\lambda \in[0,1]$. Assume that $\lambda h(p)+(1-\lambda) h(q)$ is defined. If either $h(p)$ or $h(q)$ is infinite, nothing to prove. Assume $h(p)$ and $h(q)$ are finite. Let $\epsilon>0$ be given, there exists a $u_{1} \in V$ such that

$$
\Phi(u, p) \leq h(p)+\epsilon
$$

and there exists $u_{2} \in V$ such that

$$
\Phi(u, q) \leq h(q)+\epsilon
$$

Now, we have

$$
\begin{aligned}
h[\lambda h(p)+(1-\lambda) h(q)] & \leq Q\left[\lambda\left(u_{1}, p\right)+(1-\lambda)\left(u_{2}, q\right)\right] \\
& \leq \lambda Q\left(u_{1}, p\right)+(1-\lambda) Q\left(u_{2}, q\right) \\
& \leq \lambda h(p)+(1-\lambda) h(q)+\epsilon
\end{aligned}
$$

Since ϵ is arbitrary h is convex.

Lemma 38

For all $p^{*} \in V^{*}$

$$
h^{*}\left(p^{*}\right)=\Phi^{*}\left(0, p^{*}\right)
$$

Proof.

$$
\begin{aligned}
h^{*}\left(p^{*}\right) & =\sup _{p \in Y}\left\langle p^{*}, p\right\rangle-h(p) \\
& =\sup _{p \in Y}\left\{\left\langle p^{*}, p\right\rangle-\inf _{u \in V} \Phi(u, p)\right\} \\
& =\sup _{(u, p) \in V \times Y}\left\{\left\langle p^{*}, p\right\rangle-\Phi(u, p)\right\} \\
& =\sup _{(u, p) \in V \times Y}\left\{\langle u, 0\rangle+\left\langle p^{*}, p\right\rangle-\Phi(u, p)\right\}=\Phi^{*}\left(0, p^{*}\right)
\end{aligned}
$$

Lemma 39

$\sup P^{*}=h^{* *}(0)$.

Proof.

$$
\begin{aligned}
\sup P^{*} & =\sup _{p^{*} \in Y^{*}}\left\{-\Phi^{*}\left(0, p^{*}\right)\right\} \\
& =\sup _{p^{*} \in Y^{*}}\left\{-h^{*}\left(p^{*}\right)\right\} \\
& =\sup _{p^{*} \in Y^{*}}\left\{\left\langle 0, p^{*}\right\rangle-h^{*}\left(p^{*}\right)\right\}=\Phi\left(0, p^{*}\right)
\end{aligned}
$$

Remark 40

$$
\sup P^{*} \leq \inf P \Leftrightarrow h^{* *}(0) \leq h(0)
$$

Definition 41

The problem (P) is called normal if $h(0) \in \mathbb{R}$ and h is lsc at 0 .

Proposition 42

Problem (P) is normal iff $\sup P^{*}=\inf P \in \mathbb{R}$.
Proof. Assume that (P) is normal. Let \bar{h} be the lsc regularization of h. Then

$$
\begin{equation*}
h^{* *} \leq \bar{h} \leq h \tag{3}
\end{equation*}
$$

$\bar{h}(0)=h(0), \bar{h}$ is convex, lsc and finite at 0 . So

$$
\bar{h} \not \equiv-\infty \Rightarrow \bar{h} \in \Gamma_{0}(Y) \Rightarrow \bar{h}^{* *}=\bar{h}
$$

From 3

$$
h^{*} \leq \bar{h}^{*} \leq h^{* * *}=h^{*}
$$

but $h^{*}=\bar{h}^{*}$. So $h^{* *}=\bar{h}^{* *}=\bar{h}$ and $h^{* *}(0)=\bar{h}(0)=h(0)$. That is

$$
\sup P^{*}=\inf P
$$

Now assume $\sup P^{*}=\inf P \in \mathbb{R}$. Then $h^{* *}(0)=h(0)$. Let \bar{h} be the lsc regularization of h

$$
h^{* *} \leq \bar{h} \leq h
$$

So h is lsc at 0, i.e.

$$
h(0)=\bar{h}(0)=\liminf _{p \longrightarrow 0} h(p)
$$

Lemma 43

P^{*} is normal iff inf $P=\sup P^{*}$
Proof. By proposition (42) P^{*} is normal iff $\inf P^{* *}=\sup P^{*}$ i.e. $\inf P=\sup P^{*}$

16 Lecture 16

(Stable Problems)

DEFINITION 44

Problem P is called stable if $h(0) \in \mathbf{R}, \partial h(0) \neq \phi$.

Lemma 45

The set of solution of \mathbf{P}^{*} coincides with $\partial h^{* *}(0)$.
Proof. Suppose p^{*} is a solution of \mathbf{P}^{*}, then

$$
-h^{*}\left(p^{*}\right)=-\Phi\left(0, p^{*}\right)=\sup _{q^{*} \in Y}-\Phi\left(0, q^{*}\right)=h^{* *}(0)
$$

Fix $p \in Y$, then,

$$
\sup _{q^{*} \in Y}<p, q^{*}>-h^{*}\left(q^{*}\right) \geq h^{*}\left(p^{*}\right)+<p^{*}, p>
$$

i.e.:

$$
h^{* *}(p) \geq-h^{*}\left(p^{*}\right)+<p^{*}, p>=h^{* *}(0)+<p^{*}, p>
$$

Then, $p^{*} \in \partial h^{* *}(0)$.
On the other hand, let $p^{*} \in \partial h^{* *}(0)$, then

$$
\begin{gathered}
h^{* *}(p) \geq h^{* *}(0)+<p^{*}, p>\quad \forall v \in V \\
-h^{* *}(0) \geq<p^{*}, p>-h^{* *}(p) \\
-h^{* *}(0) \geq h^{* * *}\left(p^{*}\right)=h^{*}\left(p^{*}\right) \\
h^{* *}(0) \leq-h^{*}\left(p^{*}\right) \\
\sup -h^{*}\left(q^{*}\right) \leq-h^{*}\left(p^{*}\right)
\end{gathered}
$$

Therefore,

$$
-h^{*}\left(p^{*}\right)=\sup -h^{*}\left(q^{*}\right) \quad q^{*} \in Y
$$

Then, p^{*} is a solution of \mathbf{P}^{*}.

Proposition 46

\mathbf{P} is stable iff \mathbf{P} is normal and \mathbf{P}^{*} has a solution.
Proof. Suppose \mathbf{P} is stable, then \mathbf{P} is normal (since $\partial h(0) \neq 0 \Longrightarrow h$ is l.s.c at 0). Furthermore, $p^{*} \in$ $\partial h(0)=\partial h^{* *}(0)$, therefore, p^{*} is a solution of \mathbf{P}^{*} by previous lemma. Conversely if \mathbf{P} is normal and \mathbf{P}^{*} has a solution p^{*}, then

$$
p^{*} \in \partial h^{* *}(0)=\partial h(0),
$$

since h is l.s.c at 0 .Then \mathbf{P} is stable.

Proposition 47

The Following Conditions are equivalent:
(I) \mathbf{P} and \mathbf{P}^{*} are normal and have some solutions,
(II) \mathbf{P} and \mathbf{P}^{*} are stable,
(III) \mathbf{P} is stable and has some solutions.

Proof. (I) \Rightarrow (II),
Assume (I), \mathbf{P}^{*} is normal and \mathbf{P} has a solution $\Rightarrow \mathbf{P}^{*}$ is normal and $\mathbf{P}^{* *}$ has a solution,$\Rightarrow \mathbf{P}^{*}$ is stable. Similarly, \mathbf{P} is normal and \mathbf{P}^{*} has a solution $\Rightarrow \mathbf{P}$ is stable. (II) \Rightarrow (I) direct. (III) \Rightarrow (I) follows directly from previous proposition.

Proposition 48

A stability criterion.
Assume Φ is convex, that $\inf \mathbf{P} \in \mathbf{R} . \Phi\left(u_{0},.\right)$ is bounded above at 0 for some $u_{0} \in \mathbf{V}$. Then \mathbf{P} is stable.
Proof.

$$
h(p)=\inf _{u \in \mathbf{V}} \Phi(u, p) \leq \Phi\left(u_{0}, p\right)
$$

and $h(0) \in \mathbf{R} \Rightarrow h$ is bounded above at $0, \Rightarrow h$ is continuous at $0, \Rightarrow \partial h(0) \neq \phi$. Then \mathbf{P} is stable.

17 Lecture 17

Summery
P: inff $F(u)$
$\Phi: V \times Y \longrightarrow \bar{R}$ such that $\Phi(u, 0)=F(u)$
P: $\inf _{u \in v} f(u, 0)$
The dual problem
$\stackrel{*}{P}: \sup -\stackrel{*}{\Phi}(0, \stackrel{*}{p})$
$\stackrel{*}{p} \in \stackrel{*}{y}$
Sup $\stackrel{*}{P} \leq \inf P$
$-\stackrel{*}{\Phi}(0, \stackrel{*}{p}) \leq \sup \stackrel{*}{P} \leq \inf P \leq \Phi(u, 0) \Rightarrow \Phi(u, 0)+\stackrel{*}{\Phi}(0, \stackrel{*}{p}) \geq 0$
$h(p)=\inf _{u \in v} \Phi(u, p)$

- If $h(0) \in \mathbb{R}$ and h is lwoer semicontinuous at $0 \Rightarrow P$ is normal
- P is normal $\Leftrightarrow \inf P=\sup \stackrel{*}{p} \Leftrightarrow \stackrel{*}{p}$ is normal
- $h(0) \in \mathbb{R}, \partial h(0) \neq \Phi \Longrightarrow \mathrm{P}$ is stable
- P is stable iff $\stackrel{*}{P}$ is normal and has some solutions
- the set of solution of $\stackrel{*}{P}$ conicides with $\partial^{* *} h^{(0)}$
- P, $\stackrel{*}{P}$ are normal and have same solutions $\Leftrightarrow P$ and $\stackrel{*}{P}$ are stable $\Leftrightarrow \mathrm{P}$ is stable and has solutions.

Criterion for stability
Φ is convex, $h(0) \in \mathbb{R}, \Phi(u,$.$) bounded above in a nbhd of 0 \Longrightarrow P$ is stable
$h(p) \leq \Phi(u, p)$
Criterion for existence
V is a reflexive Banach space, $\Phi(., 0)$ is coercive $\Longrightarrow P$ has a solution
Extremality relation and Existence
Lemma1: $\bar{u} \in V$ is a solution of P and $\stackrel{*}{\bar{p}}$ is a solution of $\stackrel{*}{P}$ and $\inf P=\sup \stackrel{*}{P}$ iff $\Phi(\bar{u}, 0)+\stackrel{*}{\Phi}(0, \stackrel{*}{\bar{p}})=0$
Proof: if $\bar{u} \in V$ is a solution of P and $\stackrel{*}{\bar{p}}$ is a solution of $\stackrel{*}{P}$ and $\inf P=\sup \stackrel{*}{P}$, then $-\stackrel{*}{\Phi}(0, \stackrel{*}{\bar{p}})=\sup \stackrel{*}{P}$ $=\inf P=\Phi(\bar{u}, 0) \Longrightarrow \Phi(\bar{u}, 0)+\stackrel{*}{\Phi}(0, \stackrel{*}{\bar{p}})=0$
conversly assume $\Phi(\bar{u}, 0)+\stackrel{*}{\Phi}(0, \stackrel{*}{\bar{p}})=0$ for some $\bar{u} \in V$ and some $\stackrel{*}{\bar{p}} \in \stackrel{*}{Y}$ then

$$
-\stackrel{*}{\Phi}(0, \stackrel{*}{\bar{p}}) \leq \sup \stackrel{*}{P} \leq \inf P \leq \Phi(\bar{u}, 0)=-\stackrel{*}{\Phi}(0, \stackrel{*}{\bar{p}})
$$

and hence, the result is obtained.
Lagrangians and Saddle points
Definition: $L: V \times \stackrel{*}{Y} \longrightarrow \overline{\mathbb{R}}$ defined by $\quad-L(u, \stackrel{*}{P})=\operatorname{Sup}_{p \in Y}\langle p, \stackrel{*}{p}\rangle-\Phi(u, p)$ is called the Lagrangian .
Note: $-L(u, \stackrel{*}{P})=\stackrel{*}{\Phi}(\stackrel{*}{p})$ where $\Phi_{u}(p)=\Phi(u, p)$
Lemma
1 - for $u \in V, L(u,$.$) is concave and u.s.c.$
2- if Φ is convex, then for any $\stackrel{*}{p} \in \stackrel{*}{Y}, L(., \stackrel{*}{P})$ is convex
Proof: (part 2)
$L(\lambda u+(1-\lambda) v, \stackrel{*}{p})=\inf _{p \in Y}-\langle p, \stackrel{*}{p}\rangle+\Phi((\lambda u+(1-\lambda) v, p) \leq-\langle\lambda p+(1-\lambda) q, \stackrel{*}{p}\rangle+\Phi((\lambda u+(1-\lambda) v, \lambda p+(1-\lambda) q) \leq$ $\lambda(-\langle p, \stackrel{*}{p}\rangle+\Phi(u, p))+(1-\lambda)(-\langle q, \stackrel{*}{p}\rangle+\Phi(u, q))$
fix q and take the inf over $p \Longrightarrow$
$L(\lambda u+(1-\lambda) v, \stackrel{*}{p}) \leq \lambda L(u, \stackrel{*}{p})+(1-\lambda)(-\langle q, \stackrel{*}{p}\rangle+\Phi(u, q))$
now take inf over $q \Longrightarrow$
$L(\lambda u+(1-\lambda) v, \stackrel{*}{p}) \leq \lambda L(u, \stackrel{*}{p})+(1-\lambda) L(v, \stackrel{*}{p})$ and hence, $L(., \stackrel{*}{P})$ is convex.
$\stackrel{*}{P}$ in terms of L
$\stackrel{*}{\Phi}\left(\stackrel{*}{u}_{u} \stackrel{*}{p}\right)=\sup _{u \in v, p \in Y}\langle u, \stackrel{*}{u}\rangle+\langle p, \stackrel{*}{p}\rangle-\Phi(u, p)$
$\stackrel{*}{\Phi}(0, \stackrel{*}{p})=\sup _{u \in V p \in Y}\langle p, \stackrel{*}{p}\rangle-\Phi(u, p)=\sup _{u \in V}-L(u, \stackrel{*}{p})=-\inf _{u \in V} L(u, \stackrel{*}{p}) \Longrightarrow-\stackrel{*}{\Phi}(0, \stackrel{*}{p})=\inf _{u \in V} L(u, \stackrel{*}{p}) \Longrightarrow \stackrel{*}{P}:$
$\sup _{*} \inf _{u \in V} L(u, \stackrel{*}{p})$
$\stackrel{*}{p} \in \stackrel{*}{Y}$
P in terms of L

Definition: (Saddle point)
$(\bar{u}, \stackrel{*}{p}) \in V \times \stackrel{*}{Y}$ is called a saddle point of L if $L(\bar{u}, \stackrel{*}{p}) \leq L(\bar{u}, \stackrel{*}{p}) \leq L(u, \stackrel{*}{\bar{p}})$ for all $u \in V, \stackrel{*}{p} \in \stackrel{*}{Y}$.
Lemma2: $(\bar{u}, \stackrel{*}{\bar{p}}) \in V \times \stackrel{*}{Y}$ is called a saddle point of L iff \bar{u} is a solution of P and $\stackrel{*}{\bar{p}}$ is a solution of $\stackrel{*}{P}$ and $\inf P=\sup \stackrel{*}{P}$
Proof:
(\Longrightarrow) assume $(\bar{u}, \stackrel{*}{\bar{p}})$ is a saddle point $\Longrightarrow \Phi(\bar{u}, 0)=\sup _{\stackrel{*}{p} \in \stackrel{*}{Y}} L(\bar{u}, \stackrel{*}{p}) \leq L(\bar{u}, \stackrel{*}{\bar{p}}) \leq \inf _{u \in V} L(u, \stackrel{*}{\bar{p}})=-\stackrel{*}{\Phi}(0, \stackrel{*}{\bar{p}}) \Longrightarrow \Phi(\bar{u}, 0)+$ $\stackrel{*}{\Phi}(0, \stackrel{*}{\bar{p}}) \leq 0$ but $\Phi(\bar{u}, 0)+\stackrel{*}{\Phi}(0, \stackrel{*}{\bar{p}}) \geqslant 0$
$\Longrightarrow \Phi(\bar{u}, 0)+\stackrel{*}{\Phi}(0, \stackrel{*}{\bar{p}})=0$ and we get the extremality condition, so $\inf P=\sup \stackrel{*}{P}$.
(\Longleftarrow) assume \bar{u} is a solution of P and $\stackrel{*}{p}$ is a solution of $\stackrel{*}{P}$ and $\inf P=\sup \stackrel{*}{P}$
$\Phi(\bar{u}, 0)=\sup _{\stackrel{*}{p} \in \stackrel{*}{Y}} L(\bar{u}, \stackrel{*}{p}) \geqslant L(\bar{u}, \stackrel{*}{\bar{p}}) \geqslant \inf _{u \in V} L(u, \stackrel{*}{\bar{p}})=-\stackrel{*}{\Phi}(0, \stackrel{*}{\bar{p}})$
$L(u, \stackrel{*}{\bar{p}}) \geqslant \inf _{u \in V} L(u, \stackrel{*}{\bar{p}})=L(\bar{u}, \stackrel{*}{\bar{p}})=\sup _{\stackrel{*}{p} \in \stackrel{*}{Y}} L(\bar{u}, \stackrel{*}{p}) \geqslant L(\bar{u}, \stackrel{*}{p})$ and hence, $(\bar{u}, \stackrel{*}{\bar{p}})$ is a saddle point.

18 Lecture 18

$J(u, p): V \times Y \rightarrow \bar{R}, \quad A \in \mathcal{L}(Y, Y)$
Define $F: V \rightarrow \bar{R} \quad$ by $\quad F(u)=J(u, A u)$
$\underline{\mathrm{p}} \inf _{u \in V} F(u)$
$\underline{\mathrm{P}} \inf _{u \in V} J(u, A u)$
Define $\Phi: V \times Y \rightarrow \bar{R}$ by $\Phi(u, p)=J(u, A u-p)$
Clearly if J is convex, then Φ is convex.
If $J \in \Gamma_{0}(V \times Y)$, then $\Phi \in \Gamma_{0}(V \times Y)$
To show that $\Phi(u, p)=J(u, A u-p)$ is l.s.c. we have
$\lim _{(u, p) \rightarrow\left(u_{0}, p_{0}\right)} \Phi(u, p)=\lim _{(u, p) \rightarrow\left(u_{0}, p_{0}\right)} J(u, A u-p) \quad$ (note if we put $w=A u-p \Rightarrow w_{\circ}=A u_{\circ}-p_{\circ} \quad$ and as $(u, p) \rightarrow\left(u_{\circ}, p_{\circ}\right)$ we have by continuity of A that $\left.(u, w)-\left(u_{\circ}, w_{\circ}\right)\right)$. So we get:

The dual problem:

$\Phi\left(u^{*}, p\right)=\sup _{(u, p)}\left(\left\langle u, u^{*}\right\rangle+\left\langle p, p^{*}\right\rangle-J(u, A u-p)\right) \quad(\operatorname{set} q=A u-p)$
$=\operatorname{supsup}_{u}\left\langle u, u^{*}\right\rangle+\left\langle A u-q, p^{*}\right\rangle-J(u, q)$
$=\operatorname{supsup}\left\langle u, u^{*}+A^{*} p^{*}\right\rangle+\left\langle q,-p^{*}\right\rangle-J(u, q)$
$=\stackrel{u}{u} \stackrel{q}{J^{*}}\left(u^{*}+A^{*} p^{*},-p^{*}\right) \quad \Rightarrow \quad \Phi^{*}\left(0, p^{*}\right)=J^{*}\left(A^{*} p^{*},-p^{*}\right)$
So the dual problem can be written as :
$\mathbf{P}^{*}: \sup _{P^{*} \in Y^{*}}-J^{*}\left(A^{*} p^{*},-p^{*}\right)$

Stablitiy:

If inf $\mathrm{P}=\mathrm{h}(\mathrm{p})$ is finit and $J\left(u_{0}, \cdot\right)$ is bounded above in a nbhd of 0 , then P is stable, and inf $P=\sup P^{*}$ and P^{*} has solutions.
Existence:
If V is a reflexive Banach space, $J(u, A u) \rightarrow \infty$ as $\|u\| \rightarrow \infty$. Then P has solutions

Extremality:

\bar{u} is a solution of \mathbf{P} and \bar{p}^{*} is a solution of \mathbf{P}^{*} iff $J(\bar{u}, A \bar{u})+J^{*}\left(A^{*} \bar{p}^{*},-\bar{p}^{*}\right)=0$ iff

$$
\left(A^{*} \bar{p}^{*},-\bar{p}^{*}\right) \in \partial J(\bar{u}, A \bar{u})
$$

Note: $F(u)+F^{*}\left(u^{*}\right)=\left\langle u, u^{*}\right\rangle$ iff $u^{*} \in \partial F(u)$
$\left\langle(\bar{u}, A \bar{u}),\left(A^{*} \bar{p}^{*},-\bar{p}^{*}\right)\right\rangle=\left\langle\bar{u}, A^{*} \bar{p}^{*}\right\rangle+\left\langle A \bar{u},-\bar{p}^{*}\right\rangle=0$

Lagragian of P :

$-L\left(u, p^{*}\right)=\sup _{p \in Y}\left(\left\langle p, p^{*}\right\rangle-J(u, A u-p)\right)=\sup _{q \in Y}\left\langle A u-q, p^{*}\right\rangle-J(u, q)=\left\langle A u, p^{*}\right\rangle-\sup _{q \in Y}\left\langle q,-p^{*}\right)-J_{u}(q)=$

$$
\left\langle A u, p^{*}\right\rangle+J_{u}^{*}\left(-p^{*}\right)
$$

```
If \(J(u, p)=F(u)+G(p)\)
\(J^{*}\left(u^{*}, p^{*}\right)=F^{*}\left(u^{*}\right)+G^{*}\left(p^{*}\right)=J^{*}\left(u^{*}, p^{*}\right)=\sup _{(u, p)}\left(\left\langle u, u^{*}\right\rangle+\left\langle p, p^{*}\right\rangle-J(u, p)\right)=\operatorname{supsup}_{u}\left(\left\langle u, u^{*}\right\rangle+\left\langle p, p^{*}\right\rangle-F(u)-\right.\)
\(G(p))\)
\[
=F^{*}\left(u^{*}\right)+G^{*}\left(p^{*}\right)
\]
```

P: $\quad \inf _{u \in V} F(u)+G(A u)$
$\mathrm{P}^{*}: \sup _{p^{*} \in Y^{*}}-\left[F^{*}\left(A^{*} p^{*}\right)+G^{*}\left(-p^{*}\right)\right]$

Stability:

$\inf \mathrm{P}$ is finite, $F\left(u_{0}\right)+G(\cdot)$ is bounded in a nbhd of $A u_{0}$

Exsistance:

V is reflexive Banach-space
$F(u)+G(A u) \rightarrow \infty$ as $\|u\| \rightarrow \infty$

Extremality:

\bar{u} is a solution of P and \bar{p}^{*} is a solution of P^{*} iff
$J(\bar{u}, A \bar{u})+J^{*}\left(A^{*} \bar{p}^{*},-\bar{p}^{*}\right)=0$
$F(\bar{u})+G(A \bar{u})+F^{*}\left(A^{*} \bar{p}^{*}\right)+G^{*}\left(-\bar{p}^{*}\right)=0$
$\left[F(\bar{u})+F^{*}\left(A^{*} p^{*}\right)\right]+\left[G(A \bar{u})+G^{*}\left(-\bar{p}^{*}\right)\right]=0$
$\left[F(\bar{u})+F^{*}\left(A^{*} \bar{p}^{*}\right)-\left\langle\bar{u}, A^{*} \bar{p}^{*}\right\rangle\right]+\left[G(A \bar{u})+G^{*}\left(-\bar{p}^{*}\right)-\left\langle A \bar{u},-\bar{p}^{*}\right\rangle\right]=0$
$\therefore F(\bar{u})+F^{*}\left(A^{*} \bar{p}^{*}\right)=\left\langle\bar{u}, A^{*} \bar{p}^{*}\right\rangle$ and $G(A \bar{u})+G^{*}\left(-\bar{p}^{*}\right)=\left\langle A \bar{u}, \bar{p}^{*}\right\rangle$ iff $A^{*} \bar{p}^{*} \in \partial F(\bar{u})$ and $-\bar{p}^{*} \in \partial G(A \bar{u})$

Now :

If $Y=\prod_{1}^{m} Y_{i} \quad Y^{*}=\prod_{1}^{m} Y_{i}^{*}$
$p \in Y \xrightarrow{\rightarrow} p=\left(p_{1}, p_{2}, \ldots \ldots \ldots, p_{m}\right), \quad p_{i} \in Y_{i}$
$G(p)=\sum_{1}^{m} G_{i}\left(p_{i}\right) \quad G_{i}: Y_{i} \rightarrow \bar{R}$
$A: V \rightarrow Y$
$A u=\left(A_{1} u, A_{2} u, \ldots ., A_{m} u\right)$
The extremality condition takes the form:
\bar{u} is a solution of $\mathrm{P}, \bar{p}_{i}^{*}$ is a solution of P^{*} iff

$$
F(\bar{u})+F^{*}\left(A^{*} \bar{p}^{*}\right)+\sum_{1}^{m} G_{i}\left(A_{j} \bar{u}\right)+\sum_{1}^{m} G_{i}^{*}\left(-\bar{p}_{i}^{*}\right)=0
$$

$F(\bar{u})+F^{*}\left(A^{*} \bar{p}^{*}\right)=\left\langle\bar{u}, A^{*} \bar{p}^{*}\right\rangle$,
$G_{i}\left(A_{i} \bar{u}\right)+G_{i}^{*}\left(-\bar{p}_{i}^{*}\right)=\left\langle A_{i} \bar{u},-\bar{p}_{i}^{*}\right\rangle, \quad i=1,2, \ldots \ldots, m$
end of lec\#18

19 Lecture 19

Important Special Cases II

DEFINITION 49

Let C be a subset of a linear space Y, then C is

- a cone if $\lambda C \subset C$ for all $\lambda>0$.
- a pointed cone if it is a cone containing zero.
- a salient cone if it is a pointed cone with $C \cap(-C)=\{0\}$.

DEFINITION 50

A cone C of a linear space Y induces a partial ordering defined by $p \geq 0$ iff $p \in C$.
This means if $p \leq q$, then $q-p \in C$. If C is salient, then \leq is an ordering relation. If \leq is an ordering relation on Y compatible with the linear structure of Y (That is: $\lambda p \leq \lambda q, \forall \lambda>0$ and $p+v \leq q+v, \forall v \in Y$ if $p \leq q$). Then $\{p \in Y: p \geq 0\}$ is a salient pointed cone.

DEFINITION 51

The polar cone of a cone C is the set

$$
C^{*}=\left\{p^{*} \in Y^{*}:\left\langle p^{*}, p\right\rangle \geq 0 \forall p \in C\right\}
$$

Lemma 52

If C is a convex pointed cone, then
(i) C^{*} is closed (in $\sigma\left(Y^{*}, Y\right)$).
(ii) $C^{* *}=C$.
(iii) $p \in C$ iff $p \in C$ iff $\left\langle p^{*}, p\right\rangle \geq 0$ for all $p^{*} \in C^{*}$.

Proof.

1. To show that C^{*} is closed, we write

$$
\begin{aligned}
C^{*} & =\left\{p^{*} \in Y^{*}:\left\langle p^{*}, p\right\rangle \geq 0 \forall p \in C\right\} \\
& =\bigcap_{p \in C}\left\{p^{*} \in Y^{*}:\left\langle p^{*}, p\right\rangle \geq 0\right\} \\
& =\bigcap_{p \in C}\left\{p^{-1}[0, \infty)\right\}
\end{aligned}
$$

Since p is continuous in the topology $\sigma\left(Y^{*}, Y\right) ; C$ is closed.
2. $C \subset C^{* *}$ is clear. To show that $C^{* *} \subset C$; let $q \in C^{* *}$, then $\left\langle q, p^{*}\right\rangle \geq 0$ for all $p^{*} \in C^{*}$. Assume that $q \notin C$, so there exists $x \neq 0 \in Y^{*}$ such that $\langle x, p\rangle \geq \alpha$ for all $p \in C$ and $\alpha \in \mathbb{R}$ and $\langle x, q\rangle<\alpha$. Since $0 \in C$, then $\alpha \leq 0$. Hence $\langle x, q\rangle<0$, but this can not happen; since $x \in C^{*}$. To show that, assume otherwise then there exists $p^{\prime} \in C$ such that $\left\langle x, p^{\prime}\right\rangle<0 \Rightarrow \lambda\left\langle x, p^{\prime}\right\rangle=\left\langle x, \lambda p^{\prime}\right\rangle<0$. But for sufficiently small λ, we have $\left\langle x, \lambda p^{\prime}\right\rangle<\alpha$ which is a contradiction. So $x \in C^{*}$, but again this is a contradiction. Thus $q \in C$.
3. $p \in C \Rightarrow p \geq 0 \Rightarrow\left\langle p^{*}, p\right\rangle \geq 0 \forall p^{*} \in C^{*} \Rightarrow p \in C^{* *}=C$.

The problem considered

Let $\phi \neq A \subset V$ be closed and convex, $J: V \longrightarrow \mathbb{R}$ convex and lsc, C closed convex cone in Y, \leq the partial ordering induced by C. $B: A \longrightarrow Y$ satisfy the following:
(B1) B is convex with respect to \leq.
(B2) For each $p^{*} \in C^{*},\left\langle p^{*}, B(\cdot)\right\rangle: A \longrightarrow \mathbb{R}$ is lsc.
(B3) The set $\{u \in A: B(u) \leq 0\} \neq \phi$.
Primal problem

$$
\inf _{\substack{u \in A \\ B u<0}} J(u)
$$

Perturbation problem

$$
\Phi(u, p)= \begin{cases}J(u) & \text { if } u \in A, B u \leq p \\ +\infty & \text { otherwise }\end{cases}
$$

Lemma 53

The set $\mathcal{E}=\{(u, p) \in V \times Y: u \in A, B u \leq p\}$ is closed and convex.

Proof.

$$
\begin{aligned}
\mathcal{E} & =\left\{(u, p) \in V \times Y: u \in A,\left\langle p^{*}, B u-p\right\rangle \leq 0 \forall p^{*} \in C\right\} \\
& =\bigcap_{p^{*} \in C^{*}}\left\{(u, p) \in V \times Y: u \in A,\left\langle p^{*}, B u-p\right\rangle \leq 0\right\} \cap(A \times Y)
\end{aligned}
$$

which is closed; since $u \longmapsto\left\langle p^{*}, B u-p\right\rangle$ is lsc by (B2). To show the convexity of C, let $(u, p),(v, q) \in \mathcal{E}$ where $u, v \in A$ and $p, q \in Y$ and $\lambda \in[0,1]$. Then

$$
\lambda(u, p)+(1-\lambda)(v, q)=(\lambda u+(1-\lambda) v, \lambda p+(1-\lambda) q)
$$

Since A is convex $\lambda u+(1-\lambda) v \in A$. Now B is convex

$$
B[\lambda u+(1-\lambda) v] \leq \lambda B u+(1-\lambda) B v \leq \lambda p+(1-\lambda) q .
$$

Hence $\lambda u+(1-\lambda) v \in \mathcal{E}$ which proves that \mathcal{E} is convex.
We can rewrite ϕ as

$$
\phi(u, p)=\hat{J}(u)=\chi_{\mathcal{E}} \quad \text { where } \hat{J}(u)=\left\{\begin{array}{l}
J(u), \\
+\infty, u \notin A
\end{array} \quad u \in A\right.
$$

Proposition 54

$\phi \in \Gamma_{0}(V \times Y)$

1. ϕ does not take the value $-\infty$.
2. $\phi \not \equiv+\infty(\phi(u, 0)<+\infty)$.
3. ϕ is convex.
4. ϕ is lsc.

20 Lecture 20

Important Special Case (II)

The dual problem

For $p^{*} \in Y$,

$$
\begin{gathered}
\Phi^{*}\left(0, p^{*}\right)=\sup _{u \in V} \sup _{p \in Y}<p, p^{*}>-\Phi(u, p) \\
=\sup _{u \in V} \sup _{p \in Y}<p, p^{*}>-\hat{J}(u)-\chi_{\epsilon}(u, p) \\
=\sup _{u \in A} \sup _{B u \leq p}<p, p^{*}>-J(u)
\end{gathered}
$$

Let $q=p-B u$,we get

$$
\begin{aligned}
& \Phi^{*}\left(0, p^{*}\right)=\sup \sup <q+B u, p^{*}>-J(u) \\
&=\sup _{u \in A} \sup _{q \geq 0}<q, p^{*}>+<B u, p^{*}>-J(u) \\
&= \sup _{u \in A}<B u, p^{*}>-J(u)+\sup _{q \geq 0}<q, p^{*}> \\
&= \sup _{u \in A}<B u, p^{*}>-J(u)+\chi_{C^{*}}(-p),
\end{aligned}
$$

then,

$$
-\Phi^{*}\left(0, p^{*}\right)=\inf _{u \in A}-<B u, p^{*}>+J(u)-\chi_{C^{*}}(-p),
$$

Thus the dual problem is

$$
\begin{gathered}
P^{*} \quad \operatorname{supinf}_{p^{*} \in Y^{*}} \operatorname{lifA}_{u \in A}-<B u, p^{*}>+J(u)-\chi_{C^{*}}(-p) \\
\sup _{p^{*} \leq 0} \inf _{u \in A}-<B u, p^{*}>+J(u) .
\end{gathered}
$$

Stability

$\inf P \in \mathbf{R}$,for some $u_{0} \in A, B u \in-C^{\circ}$ (the interior of $\left.C\right)$.Then P is stable.
Existence
Assume V is a reflexive Banach space, $J(u) \rightarrow \infty$ as $\|u\| \rightarrow \infty, u \in A$, Then P has a solution.
Extremality

$$
\inf P=\sup P^{*}
$$

the extremality relation

$$
<B \bar{u}, \bar{p}^{*}>=0
$$

because:

$$
\inf P=J(\bar{u}), \quad \bar{u} \in A, B \bar{u} \leq 0
$$

$$
\begin{equation*}
\sup P^{*}=\inf _{u \in A}-<B u, \bar{p}^{*}>J(u), \quad \bar{p}^{*}<0 \tag{*}
\end{equation*}
$$

and

$$
\begin{equation*}
J(\bar{u})=\inf _{u \in A}-<B u, \bar{p}^{*}>+J(u) \leq-<B \bar{u}, \bar{p}^{*}>+J(\bar{u}) \tag{**}
\end{equation*}
$$

then we have

$$
<B \bar{u}, \bar{p}^{*}>\leq 0
$$

from (*) and (**) we have

$$
<B \bar{u}, \bar{p}^{*}>\geq 0
$$

Then, we have the extremality relation

$$
<B \bar{u}, \bar{p}^{*}>=0 .
$$

The Lagrangian

$$
\begin{aligned}
-L\left(u, p^{*}\right) & =\sup _{p \in Y}<p, p^{*}>-\Phi(u, p) \\
& =\sup _{p \in Y}<p, p^{*}>-\hat{J}(u)-\chi_{\epsilon}(u, p) \\
& =-\hat{J}(u)+\sup _{B u \leq p}<p, p^{*}> \\
& =-\hat{J}(u)+\sup _{q \geq 0}<B u, p^{*}>-<q, p^{*}> \\
& =-\hat{J}(u)+<B u, p^{*}>+\chi_{C^{*}}\left(-p^{*}\right) .
\end{aligned}
$$

Then,

$$
L\left(u, p^{*}\right)=\hat{J}(u)-<B u, p^{*}>-\chi_{C^{*}}\left(-p^{*}\right)
$$

Proposition $\left(\bar{u}, \bar{p}^{*}\right) \in V \times Y^{*}$ is a saddle point of L if and only if $\bar{u} \in A, \bar{p}^{*}<0$, and

$$
\begin{equation*}
J(\bar{u})-<B \bar{u}, p^{*}>\leq J(\bar{u})-<B \bar{u}, \bar{p}^{*}>\leq J(u)-<B u, \bar{p}^{*}>, \quad \forall u \in A, \forall p^{*} \leq 0 \tag{1}
\end{equation*}
$$

Proof: assume $\left(\bar{u}, \bar{p}^{*}\right)$ is a saddle point of L, (let $u \in A$ and $\left.p^{*} \leq 0\right)$

$$
\begin{gathered}
-<B \bar{u}, p^{*}>+\hat{J}(\bar{u})-\chi_{C^{*}}\left(-p^{*}\right) \leq-<B \bar{u}, \bar{p}^{*}>+\hat{J}(\bar{u})-\chi_{C^{*}}\left(-\bar{p}^{*}\right) \\
\leq-<B u, \bar{p}^{*}>+\hat{J}(u)-\chi_{C^{*}}\left(-\bar{p}^{*}\right),
\end{gathered}
$$

then

$$
\begin{gathered}
-\infty<-<B \bar{u}, p^{*}>+\hat{J}(\bar{u}) \leq-<B \bar{u}, \bar{p}^{*}>+\hat{J}(\bar{u})-\chi_{C^{*}}\left(-\bar{p}^{*}\right) \\
\leq-<B u, \bar{p}^{*}>+\hat{J}(u)-\chi_{C^{*}}\left(-\bar{p}^{*}\right)
\end{gathered}
$$

the left most and right most parts of the inequalities give $\bar{p}^{*} \leq 0$, and the second and the third parts give $\bar{u} \in A$.

$$
-<B \bar{u}, p^{*}>+\hat{J}(\bar{u}) \leq-<B \bar{u}, \bar{p}^{*}>+\hat{J}(\bar{u}) \leq-<B u, \bar{p}^{*}>+\hat{J}(u) .
$$

Assume $\bar{u} \in A$ and $\bar{p}^{*} \leq 0$ and (1) is satisfied,

$$
\begin{gathered}
L\left(\bar{u}, \bar{p}^{*}\right)=-<B \bar{u}, \bar{p}^{*}>+\hat{J}(\bar{u}), \\
L\left(u, \bar{p}^{*}\right)=-<B u, \bar{p}^{*}>+\hat{J}(u), \\
L\left(\bar{u}, p^{*}\right)=-<B \bar{u}, p^{*}>+\hat{J}(\bar{u})-\chi_{C^{*}}\left(-p^{*}\right),
\end{gathered}
$$

then

$$
L\left(\bar{u}, p^{*}\right) \leq L\left(\bar{u}, \bar{p}^{*}\right) \leq L\left(u, \bar{p}^{*}\right)
$$

then $\left(\bar{u}, \bar{p}^{*}\right)$ is a saddle point of L.
Kuhn-Tucker theorem $V=V^{*}=\mathbf{R}^{n}, Y=Y^{*}=\mathbf{R}^{m}, A \subseteq \mathbf{R}^{n}$ is closed convex set.

$$
J: A \rightarrow \mathbf{R}, \quad \text { convex and l.s.c. }
$$

the cone C,

$$
C=\left\{p \in \mathbf{R}^{m}: p_{i} \geq 0, i=1,2, \ldots, m\right\} .
$$

$C^{*}=C$,
the function $B: A \rightarrow \mathbf{R}^{m}$ is defined by $B u=\left(B_{1} u, B_{2} u, \ldots, B_{m} u\right)$, and

$$
\begin{gathered}
B_{i}: A \rightarrow \mathbf{R} \quad \text { convex and l.s.c. } \\
B_{i} u_{0}<0, \quad i=1,2, \ldots . m \text { for some } u_{0} \in A .
\end{gathered}
$$

the primal problem is

$$
P \inf _{u \in A, B u \leq 0} J(u)
$$

$\bar{u} \in A$ is a solution of P iff there exists $\bar{p} \in \mathbf{R}^{m}, \bar{p} \leq 0$ such that (\bar{u}, \bar{p}) is a saddle point of L, in this case

$$
\sum_{i=1}^{m} p_{i} B_{i} \bar{u}=0,
$$

note that P is stable, if \bar{u} is a solution of P therefor P^{*} has a solution $\bar{p} \leq 0$, and (\bar{u}, \bar{p}) is a saddle point of L.On the other hand if $\bar{p} \leq 0$ such that (\bar{u}, \bar{p}) is a saddle point of L, \bar{u} is a solution of P. By the previous proposition, $\bar{u} \in A$.

$$
\begin{aligned}
& \bar{p} \leq 0 \Rightarrow \bar{p}_{i} \leq 0 \quad \forall i \\
& B \bar{u} \leq 0 \Rightarrow B_{i} \bar{u} \leq 0 \quad \forall i \\
& \sum_{i=1}^{m} p_{i} B_{i} \bar{u}=0 \Rightarrow p_{i} B_{i} \bar{u}=0,
\end{aligned}
$$

if $B_{i} \bar{u}<0$ then $p_{i}=0$ and if $p_{i}<0$ then $B_{i} \bar{u}=0$.

21 Lecture 21

Applications of Duality to the calculus of varitions

Preliminaries

Let $\Omega \subseteq \mathbb{R}^{n}$ be open, sometimes we require reqularity on Ω.
Regularity: Ω is said to be of class C^{r} if the boundary Γ is an r-times continuously differential maiifold of dimention ($n-1$) and Ω lies locally in one side of Γ.
For $x \in \Gamma, \nu(x)=\left(\nu_{1}(x), \nu_{2}(x), \ldots, \nu_{n}(x)\right)$ will denote the outward normal to Ω.
Differentiation, Multiindex Notation.
for $j=\left(j_{1}, j_{2}, \ldots, j_{n}\right) \in \mathbb{N}^{n}$,
$D^{j} u=D^{j} D^{j_{2}} \ldots D^{j_{n}} u=\frac{\partial^{|j|}}{\partial x_{1}^{j_{1}} \partial x_{2}^{j_{2}} \ldots \partial x_{n}^{j_{n}}}$ where $|j|=j_{1}+j_{2}+\ldots+j_{n}$.
Examle: let $j=(1,2,4,0) \in \mathbb{N}^{4}$,
$D^{j} u=\frac{\partial^{7} u}{\partial x_{1} \partial x_{2}^{2} \partial x_{3}^{4}}$
Remark: $D^{(0,0, \ldots, 0)}=I$
Space $L^{\alpha}(\Omega), 1 \leq \alpha<\infty$
$L^{\alpha}(\Omega)=\left\{u: \Omega \longrightarrow \mathbb{R}: \int_{\Omega}|u(x)|^{\alpha} d x<\infty\right\}$ is a Banach space under the norm $\|u\|_{L^{\alpha}(\Omega)}=\left(\int_{\Omega}|u(x)|^{\alpha} d x\right)^{\frac{1}{\alpha}}$.
Space $L^{\infty}(\Omega)$
$L^{\infty}(\Omega)=\{u: \Omega \longrightarrow \mathbb{R}: E s s . \sup |u(x)|<\infty\}$ is a Banach space under the norm $\|u\|_{L^{\infty}(\Omega)}=\underset{x \in \Omega}{E s s . \sup |u(x)|}$
The Dual spaces of $L^{\alpha}(\Omega)$
$\left(L^{\alpha}(\Omega)\right)^{*}=L^{\alpha^{\prime}}(\Omega)$ where $\frac{1}{\alpha}+\frac{1}{\alpha^{\prime}}=1$
Special case: if $\alpha=2 \Longrightarrow \alpha^{\prime}=2, L^{2}(\Omega)$ is a Hilbert space with inner product $\langle u, v\rangle=\int_{\Omega} u(x) v(x) d x$
The Soblev Spaces $\stackrel{m, \alpha}{w}(\Omega), \stackrel{m, \alpha}{w_{0}}(\Omega)$ where $1 \leq \alpha<\infty$ and $m \geqslant 1$ is an integer.
$\stackrel{m, \alpha}{w}(\Omega)=\left\{u \in L^{\alpha}(\Omega): D^{k} u \in L^{\alpha}(\Omega),|k| \leq m\right\}$ is a Banach Space under the norm $\|u\|_{\substack{m, \alpha \\ w \\ \\(\Omega)}}=\left(\sum_{|j| \leq m} \int_{\Omega}\left|D^{j} u(x)\right|^{\alpha} d x\right)^{\frac{1}{\alpha}}$
$\stackrel{m}{w}_{w_{0}, \alpha}(\Omega)$ is the closure of $C_{0}^{\infty}(\Omega)$ in the norm of $\stackrel{m, \alpha}{w}(\Omega)$.
The Trace Operator : suppose $\Omega \in C^{m+2}$
The operator $\gamma:\left(\gamma_{0}, \gamma_{1}, \ldots, \gamma_{m-1}\right): \stackrel{m, \alpha}{w}(\Omega) \longrightarrow L^{\alpha}(\Gamma)$ defined by
$\gamma_{0} u=\left.u\right|_{\Gamma}, \gamma_{1} u=\left.\frac{\partial u}{\partial \nu}\right|_{\Gamma} \ldots . \gamma_{n-1} u=\left.\frac{\partial^{m-1} u}{\partial \nu^{m-1}}\right|_{\Gamma}$ where $\frac{\partial u}{\partial \nu}=\nabla u .\left.\nu\right|_{\Gamma}$ and $\frac{\partial^{k} u}{\partial \nu^{k}}=\left.\frac{\partial}{\partial \nu} \frac{\partial^{k-1} u}{\partial \nu^{k-1}}\right|_{\Gamma}=\nabla\left(\frac{\partial^{k-1} u}{\partial \nu^{k-1}}\right) .\left.\nu\right|_{\Gamma}$ is called the Trace Operator.
γ is linear and continuous operator, also $\operatorname{Ker} \gamma=\stackrel{m_{w}, \alpha}{w_{0}}(\Omega)$
Poincare' Inequality (assume Ω to be bounded)

Green's Formula (Integration by Parts)
let $u \in \stackrel{1, \alpha}{w}(\Omega)$ and $v \in \stackrel{1, \alpha^{\prime}}{w}(\Omega)$, then $\int_{\Gamma} u v \nu_{i} d \Gamma=\int_{\Omega}\left(u D_{i} v+v D_{i} u\right) d x$ (1) where ν_{i} is the $i_{t h}$ component of ν. if we replace v by $D_{i} v$ in (1)
$\int_{\Gamma} u D_{i} v \nu_{i} d \Gamma=\int_{\Omega}\left(u D_{i}^{2} v+D_{i} v D_{i} u\right) d x$, sum for $i=1,2, \ldots, n$, we get $\int_{\Gamma} u \frac{\partial v}{\partial \nu} d \Gamma=\int_{\Omega}(u \Delta v+\nabla u . \nabla v) d x$ also if interchanged u and v we get $\int_{\Gamma} v \frac{\partial u}{\partial \nu} d \Gamma=\int_{\Omega}(v \Delta u+\nabla u . \nabla v) d x$ subtracting we get, $\int_{\Gamma}\left(u \frac{\partial v}{\partial \nu}-v \frac{\partial u}{\partial \nu}\right) d$
$\Gamma=\int_{\Omega}(u \Delta v-v \Delta u) d x$
also, replace v by v_{i} in (1) $\mathbf{v} \Longrightarrow \int_{\Gamma} u v_{i} \nu_{i} d \Gamma=\int_{\Omega}\left(u D_{i} v_{i}+v_{i} D_{i} u\right) d x \quad$ or $\int_{\Gamma} u v . \nu d \Gamma=\int_{\Omega}(u \nabla \cdot v+v \cdot \nabla u) d x$.

22 Lecture 22

Carathéodory Mappings

Definition 55 (Carathéodory Mappings)

Let $\Omega \in \mathbb{R}^{m}$ be an open Borel set ${ }^{3}, E$ and F Banach spaces, $g: \Omega \times E \longrightarrow F$. g is called a Carathéodory mapping if

1. $g(\cdot, \zeta)$ is measurable for each $\zeta \in E$.
2. $g(x, \cdot)$ is continuous for almost all $x \in \Omega$.

Let $\mathcal{M}(\Omega, E)$ be the set of measurable functions $u: \Omega \longrightarrow E, \mathfrak{m}(\Omega, F)$ the set of measurable functions $v: \Omega \longrightarrow F$. Define $K:(\Omega, F) \longrightarrow \mathfrak{m}(\Omega, F)$ by

$$
(K u)(x)=g(x, u(x))), \quad x \in \Omega
$$

Proposition 56

If $K: L^{p}(\Omega, E) \longrightarrow L^{r}(\Omega, F)$. Then K is continuous ${ }^{4}$
with respect to the norms of $L^{p}(\Omega, E), L^{r}(\Omega, F)$.
For $E=\mathbb{R}^{m}, F=R, u=\Omega \longrightarrow \mathbb{R}^{m}\left[u(x)=\left(u_{1}(x), u_{2}(x), \cdots, u_{n}(x)\right)\right]$, assume $u \in L^{\alpha_{1}} \times L^{\alpha_{2}} \times \cdots \times L^{\alpha_{n}}=V$. Also assume $K u(x)=g(x, u(x))$ maps V into $L^{\prime}(\Omega)$. We can then define $G: V \longrightarrow \mathbb{R}$ by

$$
G(u)=\int_{\Omega} K u(x) d x=\int_{\Omega} g(x, u(x)) d x
$$

The conjugate function $G^{*}: V^{*} \longrightarrow R$ where

$$
V^{*}=L^{\alpha_{1}^{\prime}} \times L^{\alpha_{2}^{\prime}} \times \cdots \times L^{\alpha_{n}^{\prime}}
$$

where $\frac{1}{\alpha_{i}}+\frac{1}{\alpha_{i}^{i}}=1$ for all i is given through the following proposition.

Proposition 57

$$
G^{*}\left(u^{*}\right)=\int_{\Omega} g^{*}\left(x, u^{*}(x)\right) d x
$$

where

$$
g^{*}(x, y)=\sup _{\eta \in \mathbb{R}^{m}} \eta \cdot y-g(x, u)
$$

First Examples
$\Omega \subseteq \mathbb{R}$ open, given $f \in L^{2}(\Omega)$,

$$
\begin{aligned}
-\Delta u & =f \\
u & =0 \quad \text { on } \Gamma
\end{aligned}
$$

Variational Form
$V=H_{0}^{1}(\Omega)$, let $v \in V$

$$
\int_{\Omega}-\Delta u v d x=\int_{\Omega} f u d x
$$

[^1]$$
\|u-v\|_{L^{p}(\Omega, E)} \leq \delta \Rightarrow\|K u-K v\|_{L^{r}(\Omega, F)} \leq \epsilon
$$

That is

$$
\left(\int_{\Omega}\|u(x)-v(x)\|_{E}^{p} d x\right)^{p} \leq \delta \Rightarrow\left(\int_{\Omega}\|K u(x)-K v(x)\|_{F}^{r} d x\right)^{r} \leq \epsilon
$$

$\langle\nabla u, \nabla v\rangle=\langle f, u\rangle$ for all $v \in V$. This is equivalent to

$$
\min \frac{1}{2}\|\nabla u\|^{2}-\langle f, u\rangle
$$

Side Notes:

- Green's Form

$$
\int_{\Omega} \nabla u \nabla v d x=\int_{\Omega} f u d x
$$

- $\langle u, v\rangle+\sum\left\langle p_{i} u, p_{i} v\right\rangle=\langle u, v\rangle+\langle\nabla u, \nabla v\rangle$.
- To find the Gâteaux derivative of $F(u)$, we evaluate

$$
\left.\frac{d}{d t} F(u+t v)\right|_{t=0}
$$

So

$$
\frac{1}{2}\|\nabla(u, t v)\|^{2}-\langle f, u+t v\rangle=\frac{1}{2}\|\nabla u\|^{2}+t\langle u, \nabla v\rangle+\frac{1}{2} t^{2}\|\nabla v\|^{2}-\langle f, u\rangle-\langle f, t v\rangle
$$

Differentiating

$$
\langle\nabla u, \nabla v\rangle+t\left|\|\nabla u\|^{2}-\langle f, v\rangle\right|_{t=0}=\langle\nabla u, \nabla v\rangle-\langle f, v\rangle=\min J(u)
$$

where

$$
J(u)=-\langle f, u\rangle+\frac{1}{2}\|\nabla u\|^{2}=F(u)+G(A u)
$$

That is

$$
F(u)=-\langle f, u\rangle, \quad A u=\nabla u, \quad G(p)=\frac{1}{2}\|p\|^{2}
$$

Now, we have $V=H_{0}^{1}(\Omega), Y=\left[L^{2}(\Omega)\right]^{n}=Y^{*}, A: V \longrightarrow Y$ and $V^{*}=H^{-1}(\Omega)$ (just the dual space of V). Also

$$
\phi(u, p)=F(u)+G(A u-p)
$$

which belongs to $\Gamma_{0}(V \times Y)$; since F is convex and G is convex and continuous. We now find the dual problem; so we need to find first F^{*}.

$$
F^{*}\left(u^{*}\right)=\sup _{u \in V}\left\langle u, u^{*}\right\rangle+\langle f, u\rangle=\sup _{u \in V}\left\langle u, u^{*}+f\right\rangle=\left\{\begin{array}{ll}
0, & \text { if } u+f=0 \\
+\infty & \text { otherwise }
\end{array} .\right.
$$

Then G^{*}. Since $G(p)=\frac{1}{2} \int_{\Omega}\|p(x)\|^{2} d x$, we have

$$
G^{*}\left(p^{*}\right)=\int_{\Omega}\left(\frac{1}{2}|p(x)|^{2}\right)^{*} d x
$$

To find $\left(\frac{1}{2}|p(x)|^{2}\right)^{*}$ let us define $g: \Omega \times \mathbb{R}^{n} \longrightarrow \mathbb{R}$ by

$$
g(x, y)=\frac{1}{2}\|y\|^{2}
$$

Then

$$
g^{*}(x, y)=\sup _{\eta \in \mathbb{R}^{n}} \eta y-\frac{1}{2}|y|^{2}
$$

To find the supremum, we shall find the derivative, then equate with zero. Let $\tilde{F}(\eta)=\eta y-\frac{1}{2}|\eta|^{2}$, then

$$
\tilde{F}(\eta+t \zeta)=(\eta+t \zeta) \cdot y-\frac{1}{2}|\eta+t \zeta|^{2}=\eta y+t \zeta y-\frac{1}{2}\left(|\eta|^{2}+2 t \eta \zeta+t^{2}|\zeta|^{2}\right)
$$

Therefore,

$$
\begin{aligned}
\left.\frac{d}{d t} \tilde{F}(\eta+t \zeta)\right|_{t=0} & =0 \\
\eta y-\eta \zeta-\left.t|\zeta|^{2}\right|_{t=0} & =\zeta y-\zeta \eta=\zeta(y-\eta)=0, \quad \forall \zeta \in \mathbb{R}^{n}
\end{aligned}
$$

So for $\eta=y$ we get

$$
\begin{aligned}
g^{*}(x, y)=|y|^{2}-\frac{1}{2}|y|^{2} & =\frac{1}{2}|y|^{2} \\
\therefore G^{*}\left(p^{*}\right)=\int_{\Omega} \frac{1}{2}\left|p^{*}(x)\right|^{2} d x & =\frac{1}{2}\left\|p^{*}(x)\right\|^{2}
\end{aligned}
$$

Let us find $A^{*}: Y^{*} \longrightarrow V^{*}$

$$
\langle A u, p\rangle=\langle\nabla u, p\rangle=\int_{\Omega} \nabla u \cdot p d x \stackrel{\text { Green's }}{=}-\int_{\Omega} u \nabla p d x=\left\langle u, A^{*} p\right\rangle
$$

So,

$$
A^{*} p=-\nabla \cdot p
$$

Summary:

$F(u)=-\langle f, u\rangle$
$F^{*}\left(u^{*}\right)=\left\{\begin{array}{ll\|}\hline 0 & u^{*}=-f \\ +\infty & \text { otherwise }\end{array}\right.$
$G(p)=\frac{1}{2}\\|p\\|^{2}$
$G^{*}\left(p^{*}\right)=\frac{1}{2}\left\\|p^{*}\right\\|^{2}$
$A(u)=\nabla u$
$A^{*}(p)=\nabla \cdot p$

23 Lecture 23

Dirichlet Problem:

$-\triangle u=f \quad$ on Ω
$u=0 \quad$ on Γ
$\inf \left(\frac{1}{2}\|\nabla u\|^{2}-\langle f, u\rangle\right)$
$V=H_{0}^{1}(\Omega), \quad Y=L^{2}(\Omega)^{n}, \quad V^{*}=H_{0}^{-1}(\Omega), \quad Y^{*}=Y$
$F: V \rightarrow R$ is defined by $F(n)=-\langle f, u\rangle$

$$
F^{*}\left(u^{*}\right)= \begin{cases}0 & \text { if } u^{*}=-f \\ \infty & \text { other wise }\end{cases}
$$

$G(p)=\frac{1}{2}\|p\|^{2}$
$G^{*}\left(p^{*}\right)=\frac{1}{2}\left\|p^{*}\right\|^{2}$
Now P is given as:

$$
\inf \frac{1}{2}\|\nabla u\|^{2}-\langle f, u\rangle
$$

where $J(u, p)=\frac{1}{2}\|\nabla u\|^{2}-\langle f, u\rangle$ is continouos, coercive (by Poin Care' inequality), and strictly convex which implies that P has a unique solution and P is stable $\Rightarrow \mathrm{P}^{*}$ has a solution and inf $P=\sup P^{*}$.

Also,
$\Phi\left(0, p^{*}\right)=J^{*}\left(A^{*} p^{*},-p^{*}\right)=F^{*}\left(A^{*} p^{*}\right)+G^{*}\left(-p^{*}\right)$
$\Rightarrow \mathbf{P}^{*}$ is given by: $\sup _{p^{*} \in Y^{*}}-\left[F^{*}\left(A^{*} p^{*}\right)+G^{*}\left(-p^{*}\right)\right]=\sup _{A^{*} p^{*}=-f}-G^{*}\left(-p^{*}\right)=\sup _{A^{*} p^{*}=-f}-\frac{1}{2}\left\|p^{*}\right\|^{2}$
and since $p^{*} \rightarrow\left\|p^{*}\right\|^{2}$ is continouos, coercive, strictly convex, P^{*} has a unique solution.
Note here that we can find the clear relation between P and P^{*} For the extramility condition as follows:

$$
\begin{aligned}
& F(\bar{u})+F^{*}\left(A^{*} \bar{p}^{*}\right)=\left\langle\bar{u}, A^{*} \bar{p}^{*}\right\rangle \Rightarrow-\langle f, \bar{u}\rangle=-\langle f, \bar{u}\rangle \text { (trivial equation) } \\
& \text { and } G(A \bar{u})+G^{*}\left(-\bar{p}^{*}\right)=\left\langle A \bar{u}, \bar{p}^{*}\right\rangle \quad \Rightarrow \frac{1}{2}\left\|\bar{u}^{*}\right\|^{2}+\frac{1}{2}\left\|\bar{p}^{*}\right\|^{2}+\left\langle\bar{p}^{*}, \nabla \bar{u}\right\rangle=0 \\
& \Rightarrow\left\|\nabla \bar{u}+\bar{p}^{*}\right\|^{2}=0 \Rightarrow \nabla \bar{u}=-\bar{p}^{*} \\
& \quad \inf P=\sup P^{*}=-G^{*}\left(-\bar{p}^{*}\right)=-\frac{1}{2}\left\|\bar{p}^{*}\right\|^{2}=-\frac{1}{2}\|\nabla \bar{u}\|^{2}
\end{aligned}
$$

The nonlinear Dirichlet Problem:

$\inf \left(\frac{1}{\alpha}\|\nabla u\|^{\alpha}-\langle f, u\rangle\right)$
with $u \in W_{0}^{1, \alpha}(\Omega), \quad f \in W_{0}^{-1, \alpha^{\prime}}(\Omega), \quad \frac{1}{\alpha}+\frac{1}{\alpha^{\prime}}=1$ and $1 \lessdot \alpha \lessdot \infty$

Lemma:

$$
\text { let } f: R \rightarrow R \text { be defined by } \begin{aligned}
& f(x)=\frac{1}{\alpha}|x|^{\alpha} \text { then } \\
& f^{*}(y)=\sup _{x \in R} x y-\frac{1}{\alpha}|x|^{\alpha}=\frac{1}{\alpha^{\prime}}|y|^{\alpha^{\prime}} \quad \text { and the sup occurs at } \bar{x} \\
& \text { where } \bar{x}|\bar{x}|^{\alpha-2}=y
\end{aligned}
$$

Proof: (EFS)
$V=W^{1, \alpha}(\Omega), \quad Y=L^{\alpha}(\Omega)^{n}, \quad Y^{*}=L^{\alpha^{\prime}}(\Omega)^{n}, \quad V^{*}=W^{-1, \alpha^{\prime}}(\Omega)$

$$
F(n)=-\langle f, u\rangle
$$

$$
F^{*}\left(u^{*}\right)= \begin{cases}0 & \text { if } u^{*}=-f \\ \infty & \text { other wise }\end{cases}
$$

$G(p)=\frac{1}{\alpha}\|p\|_{L^{\alpha^{\prime}}(\Omega)^{n}}^{\alpha}$
$G^{*}\left(p^{*}\right)=\frac{1}{\alpha^{\prime}}\left\|p^{*}\right\|_{L^{\alpha^{\prime}}(\Omega)^{n}}^{\alpha^{\prime}} \quad$ (to show)
Define: $\mathbf{g}(\eta)=\frac{1}{\alpha}|\eta|^{\alpha} \Rightarrow \mathbf{g}^{*}(\eta)=\sup _{\eta \in Y} \eta \cdot y-\mathbf{g}(\eta)$

$$
\begin{aligned}
& =\sup _{\eta \in Y} \eta \cdot y-\frac{1}{\alpha}|\eta|^{\alpha} \\
& =\sup _{\eta \in Y} \eta \cdot y-\frac{1}{\alpha} \sum\left|\eta_{i}\right|^{\alpha} \\
& =\sup _{\eta \in Y} \sum \eta_{i} y_{i}-\frac{1}{\alpha}\left|\eta_{i}\right|^{\alpha}
\end{aligned}
$$

and by equating all partial derivative to zero we get:

$$
\begin{aligned}
& y_{i}=\left|\eta_{i}\right|^{\alpha-1} \frac{\eta_{i}}{\left|\eta_{i}\right|}=\left|\eta_{i}\right|^{\alpha-2} \eta_{i} \Rightarrow \\
& \mathbf{g}^{*}(y)=\frac{1}{\alpha^{\prime}}|y|_{\alpha^{\prime}}^{\alpha^{\prime}}
\end{aligned}
$$

i.e. $G^{*}\left(p^{*}\right)=\frac{1}{\alpha^{\prime}}\left\|p^{*}\right\|_{L^{\alpha^{\prime}}(\Omega)^{n}}^{\alpha^{\prime}}$
and so P^{*} becomes:
$\sup _{A^{*} p^{*}=-f}-\frac{1}{\alpha^{\prime}}\left\|p^{*}\right\|_{L^{\alpha^{\prime}}(\Omega)^{n}}^{\alpha^{\prime}}$ note here as exactly as before (coercivity, strict convexisty...
we have P has unique solution, and P^{*} is so. end of lec\#23

24 Lecture 24

The non-linear Dirichlet problem

$$
\begin{gathered}
P^{*} \quad \inf \frac{1}{\alpha}\|u\|^{\alpha}-<f, u> \\
u \in V=W_{0}^{1, \alpha}(\Omega), \quad f \in V^{*}=W^{-1, \alpha^{\prime}}(\Omega), \quad Y=L^{\alpha}(\Omega)^{n}, \quad Y^{*}=L^{\alpha \prime}(\Omega)^{n} \\
F(u)=-<f, u>, \quad G(p)=\frac{1}{\alpha}\|p\|^{\alpha} \quad G^{*}\left(p^{*}\right)=\frac{1}{\alpha^{\prime}}\left\|p^{*}\right\|^{\alpha^{\prime}}
\end{gathered}
$$

Extremality

$$
\Rightarrow
$$

$$
\begin{gathered}
\left.G(A \bar{u})+G^{*}\left(-\bar{p}^{*}\right)+<\bar{p}^{*}, A \bar{u}\right)>=0 \\
\left.\frac{1}{\alpha}\|A \bar{u}\|^{\alpha}+\frac{1}{\alpha \prime}\left\|\bar{p}^{*}\right\|^{\alpha \prime}+<\bar{p}^{*}, A \bar{u}\right)>=0 \\
\frac{1}{\alpha} \int_{\Omega} \sum\left|D_{i} \bar{u}\right|^{\alpha}+\frac{1}{\alpha^{\prime}} \int_{\Omega} \sum\left|\bar{p}_{i}^{*}\right|^{\alpha^{\prime}}+\int_{\Omega} \sum \bar{p}_{i}^{*} D_{i} \bar{u}=0 \\
\sum \int_{\Omega} \frac{1}{\alpha}\left|D_{i} \bar{u}\right|^{\alpha}+\frac{1}{\alpha^{\prime}}\left|\bar{p}_{i}^{*}\right|^{\alpha^{\prime}}+\bar{p}_{i}^{*} D_{i} \bar{u}=0 \\
\frac{1}{\alpha}\left|D_{i} \bar{u}\right|^{\alpha}+\frac{1}{\alpha^{\prime}}\left|\bar{p}_{i}^{*}\right|^{\alpha^{\prime}}+\bar{p}_{i}^{*} D_{i} \bar{u}=0, \quad i=1,2, \ldots ., n
\end{gathered}
$$

then the extremality relation

$$
\bar{p}_{i}^{*}=-D_{i} \bar{u}\left|D_{i} \bar{u}\right|^{\alpha-2} .
$$

now, $A=\nabla, A^{*}=-d i v$,

$$
\begin{gathered}
A^{*} p^{*}=-f \\
-\nabla \cdot \bar{p}^{*}=-f \\
\sum D_{i} \bar{p}_{i}^{*}=f \\
f=-\sum D_{i}\left(D_{i} \bar{u}\left|D_{i} \bar{u}\right|^{\alpha-2}\right), \quad \gamma_{0} \bar{u}=0
\end{gathered}
$$

The Neumann Problem

$$
\begin{gathered}
V=H^{1}(\Omega), \quad V^{*}=\left(H^{1}(\Omega)\right)^{*}, \quad Y=L^{2}(\Omega)^{n+1}=Y^{*} \\
P \quad \inf _{u \in H^{1}(\Omega)^{2}} \frac{1}{2}\left(\|u\|^{2}+\|\nabla u\|^{2}\right)-<f, u> \\
F(u)=-<f, u>, \quad A u=<u, \nabla u>\quad, G(p)=\frac{1}{2}\|p\|^{2}, \\
F^{*}\left(u^{*}\right)=\left\{\begin{array}{cc}
0 & \text { if } u^{*}=-f \\
\infty & \text { otherwise },
\end{array}\right.
\end{gathered}
$$

as before we have,

$$
\begin{gathered}
G^{*}\left(p^{*}\right)=\frac{1}{2}\left\|p^{*}\right\|^{2} \\
P^{*} \quad \sup _{A^{*} p^{*}=-f}-\frac{1}{2}\left\|p^{*}\right\|^{2},
\end{gathered}
$$

Extremality

$$
\begin{gathered}
\left.G(A \bar{u})+G^{*}\left(-\bar{p}^{*}\right)+<\bar{p}^{*}, A \bar{u}\right)>=0 \\
\left.\frac{1}{2}\|A \bar{u}\|^{2}+\frac{1}{2}\left\|\bar{p}^{*}\right\|^{2}+<\bar{p}^{*}, A \bar{u}\right)>=0
\end{gathered}
$$

or

$$
\left\|A \bar{u}+\bar{p}^{*}\right\|=0
$$

$$
\begin{gathered}
\bar{p}^{*}=-A \bar{u}=-<\bar{u}, \nabla \bar{u}> \\
\bar{p}_{1}^{*}=-\bar{u}, \underbrace{\bar{p}_{2}^{*}=-\nabla \bar{u}}_{n-\operatorname{dim} .}
\end{gathered}
$$

Now, let $u \in H^{1}(\Omega), v \in Y$

$$
\begin{gathered}
<A u, v>=<(u, \nabla u),\left(v_{1}, v_{2}\right)> \\
=<u, v_{1}>+<\nabla u, v_{2}>
\end{gathered}
$$

$$
=<u, v_{1}>+<u,-\operatorname{div} v_{2}>+<\gamma_{0} u, \gamma_{0} v_{2} . v>_{\Gamma}=<u, A^{*} v>
$$

for $v=\bar{p}^{*}, A^{*} p^{*}=-f$

$$
\begin{gathered}
<u, A^{*} \bar{p}^{*}>=-<u, \bar{u}>+<u, \Delta \bar{u}>+<\gamma_{0} u, \gamma_{0} v_{2} . v>_{\Gamma} \\
<u,-f>=-<u, \bar{u}>+<u, \Delta \bar{u}>+<\gamma_{0} u, \gamma_{0} v_{2} . v>_{\Gamma}, \quad \forall u \in H^{1}(\Omega)
\end{gathered}
$$

in particular, for $u \in H_{0}^{1}(\Omega)$

$$
\begin{gathered}
<u,-f>=<u,-\bar{u}+\Delta \bar{u}> \\
<u,-f+\bar{u}-\Delta \bar{u}>=0, \quad \forall u \in H_{0}^{1}(\Omega)
\end{gathered}
$$

so we have

$$
-\Delta \bar{u}+\bar{u}-\Delta \bar{u}=f, \quad \operatorname{in}\left(H^{1}(\Omega)\right)^{*}
$$

and for $u u \in H^{1}(\Omega)$

$$
\begin{gathered}
<\gamma_{0} u, \gamma_{0}\left(-\nabla \bar{u} . v>_{\Gamma}=0\right. \\
<\gamma_{0} u,-\gamma_{0} \frac{\partial \bar{u}}{\partial v}>_{\Gamma}=0, \frac{\partial \bar{u}}{\partial v}=0 \quad \text { on } \Gamma .
\end{gathered}
$$

The Stokes Problem

$$
V=H_{0}^{1}(\Omega)^{n}, \quad V^{*}=H^{-1}(\Omega)^{n}, \quad Y=Y^{*}=L^{2}(\Omega)
$$

Given $f \in V^{*}$, find $u \in V, p \in L^{2}(\Omega)$, such that

$$
\begin{gathered}
-\Delta u+\nabla p=f \\
\nabla \cdot u=0 \\
u=0 \quad \text { on } \Gamma .
\end{gathered}
$$

Let

$$
W=\left\{u \in H_{0}^{1}(\Omega)^{n}: \nabla \cdot u=0\right.
$$

this is a Hilbert space.
The minimization problem

$$
\begin{aligned}
& P \quad \inf _{u \in W} \frac{1}{2}\|\nabla u\|^{2}-<f, u> \\
& =\inf _{u \in V} \frac{1}{2}\|\nabla u\|^{2}-<f, u>+\chi_{\{0\}}(\nabla \cdot u) \\
& A=\operatorname{div}, \quad F(u)=-<f, u>+\frac{1}{2}\|\nabla u\|^{2} \\
& G(p)=\chi_{\{0\}}(p)=\left\{\begin{array}{cc}
0 & \text { if } p=0 \\
\infty & \text { otherwise }
\end{array}\right. \\
& G^{*}\left(p^{*}\right)=\sup _{p \in Y}<p, p^{*}>-G(p)=0 \\
& F^{*}(u)=\sup _{u \in V}<u, u^{*}>+<f, u>-\frac{1}{2}\|\nabla u\|^{2} \\
& =\sup _{u \in V}<u, u^{*}>+<f, u>-\frac{1}{2}\|u\|_{H_{0}^{1}(\Omega)^{n}}^{2}
\end{aligned}
$$

$$
=\sup _{u \in V}<u, u^{*}+f>-\frac{1}{2}\|u\|_{H_{0}^{1}(\Omega)^{n}}^{2}=\left\|u^{*}+f\right\|_{H^{-1}(\Omega)}
$$

the problem

$$
\begin{aligned}
& \sup _{u \in V}<u, v^{*}>-\frac{1}{2}\|u\|^{2} \\
= & \sup _{\alpha} \sup _{\|u\|=\alpha}<u, v^{*}>-\frac{1}{2} \alpha^{2} \\
= & \sup _{\alpha} \sup _{\|v\|=1} \alpha<v, v^{*}>-\frac{1}{2} \alpha^{2} \\
= & \sup _{\alpha} \alpha\left\|v^{*}\right\|-\frac{1}{2} \alpha^{2}=\frac{1}{2}\left\|v^{*}\right\|^{2} .
\end{aligned}
$$

25 Lecture 25

Theorem: $-\Delta: H_{0}^{1}(\Omega) \longrightarrow H^{-1}(\Omega)$ is an isometric isomorphism.
Proof:
we know that, for each $f \in H^{-1}(\Omega)$,

$$
\begin{aligned}
-\Delta u & =f \\
\gamma_{0} u & =0
\end{aligned}
$$

has a unique solution $u \in H_{0}^{1}(\Omega)$.
This implies that $-\Delta$ is 1-to- 1 and on-to. we need to show it is an isometry, indded;

$$
\|-\Delta u\|_{H^{-1}(\Omega)}=\|f\|_{H^{-1}(\Omega)}=\sup _{\substack{v \in H_{0}^{1}(\Omega) \\ v \neq 0}} \frac{\langle f, v\rangle}{\|v\|_{H_{0}^{1}(\Omega)}}=\sup _{\substack{v \in H_{0}^{1}(\Omega) \\ v \neq 0}} \frac{\langle-\Delta u, v\rangle}{\|\nabla v\|}=\sup _{\substack{v \in H_{0}^{1}(\Omega) \\ v \neq 0}} \frac{\langle\nabla u, \nabla v\rangle}{\|\nabla v\|}=\|u\|_{H_{0}^{1}(\Omega)}
$$

* Let $L_{0}^{2}(\Omega)=\left\{u \in L^{2}(\Omega): \int u=0\right\}$
note that $L_{0}^{2}(\Omega)$ is a Hilbert subspace of $L^{2}(\Omega)$, indeed;

$$
\text { let } \begin{aligned}
u_{n} & \in L_{0}^{2}(\Omega) \rightarrow u \\
u_{n} & \rightarrow u \Longrightarrow\left\langle u_{n}, v\right\rangle \rightarrow\langle u, v\rangle \quad \forall v \in L^{2}(\Omega) \\
& \Longrightarrow\left\langle u_{n}, 1\right\rangle \rightarrow\langle u, 1\rangle \Longrightarrow \int u=0
\end{aligned}
$$

Lemma: $\nabla .: H_{0}^{1}(\Omega)^{n} \rightarrow L_{0}^{2}(\Omega)$ is an isomorphism.
Proof:
1- $R(\nabla$. $) \subseteq L_{0}^{2}(\Omega)$, for $u \in H_{0}^{1}(\Omega)$ we need to show $\int \nabla . u=0$

$$
\int_{\Omega} \nabla \cdot u=\langle\nabla \cdot u, 1\rangle=\langle u, \nabla 1\rangle=0
$$

$2-\nabla$. is bounded, indeed;

$$
\|\nabla \cdot u\|_{L^{2}}^{2}=\left\|\sum \frac{\partial u_{i}}{\partial x_{i}}\right\|^{2}=\int\left|\sum \frac{\partial u_{i}}{\partial x_{i}}\right|^{2} \leq n \sum \int\left|\frac{\partial u_{i}}{\partial x_{i}}\right|^{2} \leq n \sum \int\left|\nabla u_{i}\right|^{2}=n\|u\|_{H_{0}^{1}(\Omega)^{n}}^{2} \Longrightarrow\|\nabla \cdot\| \leq \sqrt{n}
$$

$3-\nabla$. is onto

$$
(\nabla .)^{*}=-\nabla: L_{0}^{2}(\Omega) \rightarrow H^{-1}(\Omega)^{n}
$$

we show that $-\nabla$ is 1-to- 1

$$
\begin{aligned}
-\nabla u & =0 \text { in } H^{-1}(\Omega)^{n} \Longrightarrow u=c(\text { constant }) \\
\int c & =0 \Longrightarrow c \int 1=0 \Longrightarrow c=0
\end{aligned}
$$

$4-\nabla$. is 1 -to- 1

$$
\begin{aligned}
\text { let } \nabla \cdot u= & 0 \text { for some } u \in H_{0}^{1}(\Omega)^{n} \Longrightarrow\langle\nabla \cdot u, v\rangle=0 \quad \forall v \in L_{0}^{2}(\Omega) \\
& \text { since } \nabla . \text { is onto } \\
\Longrightarrow & v=\nabla \cdot w \text { for some } w \in H_{0}^{1}(\Omega)^{n} \Longrightarrow\langle\nabla \cdot u, \nabla \cdot w\rangle=0 \forall w \in H_{0}^{1}(\Omega)^{n} \\
\Longrightarrow & \langle u,-\Delta w\rangle=0 \forall w \in H_{0}^{1}(\Omega)^{n} \Longrightarrow\langle u, f\rangle=0 \quad \forall f \in H^{-1}(\Omega)^{n} \Longrightarrow u=0
\end{aligned}
$$

Stokes Problem

Let $V=H_{0}^{1}(\Omega)^{n}, V^{*}=H^{-1}(\Omega)^{n}, Y=L_{0}^{2}(\Omega)=Y^{*}$.
we need to find $u \in H_{0}^{1}(\Omega)^{n}, p \in L_{0}^{2}(\Omega)$ such that

$$
\left\{\begin{array}{l}
-\triangle u+\nabla p=f, \\
f \in H^{-1}(\Omega)^{n} \nabla \cdot u=0
\end{array}\right.
$$

Let $W=\left\{u \in H_{0}^{1}(\Omega)^{n}: \nabla . u=0\right\}$

$$
\begin{gathered}
P: \inf _{u \in H_{0}^{1}(\Omega)^{n}} \frac{1}{2}\|u\|_{H_{0}^{1}(\Omega)^{n}}^{2}-\langle f, u\rangle+\chi_{\{0\}}(\nabla \cdot u) \\
F(u)=\frac{1}{2}\|u\|_{H_{0}^{1}(\Omega)^{n}}^{2}-\langle f, u\rangle \\
A: \nabla .: H_{0}^{1}(\Omega)^{n} \rightarrow L_{0}^{2}(\Omega) \\
A^{*}:-\nabla: L_{0}^{2}(\Omega) \rightarrow H^{-1}(\Omega)^{n} \\
G(p)=\chi_{\{0\}}(p)= \begin{cases}0 & \text { if } p=0 \\
\infty & \text { otherwise }\end{cases} \\
G^{*}\left(u^{*}\right)=0 \\
F^{*}\left(u^{*}\right)=\frac{1}{2}\left\|u^{*}+f\right\|_{H}^{2}(\Omega)^{n} \\
P^{*}: \sup _{p^{*} \in Y^{*}} \frac{-1}{2}\left\|-\nabla p^{*}+f\right\|_{H-1}^{2}(\Omega)^{n}
\end{gathered}
$$

P has a unique solution and P^{*} has a unique solution .
Extremality Condition

$$
\begin{gathered}
F(\bar{u})+F^{*}\left(A^{*} \bar{p}^{*}\right)=\left\langle A^{*} \bar{p}^{*}, \bar{u}\right\rangle \\
\frac{1}{2}\|\bar{u}\|_{H_{0}^{1}(\Omega)^{n}}^{2}-\langle f, \bar{u}\rangle+\frac{1}{2}\left\|-\nabla \bar{p}^{*}+f\right\|_{H^{-1}(\Omega)^{n}}^{2}=\left\langle-\nabla \bar{p}^{*}, \bar{u}\right\rangle \\
\frac{1}{2}\|\bar{u}\|_{H_{0}^{1}(\Omega)^{n}}^{2}+\frac{1}{2}\left\|-\nabla \bar{p}^{*}+f\right\|_{H^{-1}(\Omega)^{n}}^{2}=\left\langle-\nabla \bar{p}^{*}+f, \bar{u}\right\rangle
\end{gathered}
$$

since $-\triangle$ is an isometry \Longrightarrow

$$
\begin{gathered}
\frac{1}{2}\|-\triangle \bar{u}\|_{H^{-1}(\Omega)^{n}}^{2}+\frac{1}{2}\left\|-\nabla \bar{p}^{*}+f\right\|_{H^{-1}(\Omega)^{n}}^{2}=\left\langle-\nabla \bar{p}^{*}+f, \bar{u}\right\rangle \\
\left\|-\triangle \bar{u}+\nabla \bar{p}^{*}-f\right\|_{H-1(\Omega)^{n}}^{2}=0 \\
-\triangle \bar{u}+\nabla \bar{p}^{*}=f
\end{gathered}
$$

The Direct Proof of The Existence of a Solution for P^{*}
Suppose P_{m} is a minimizing sequence

$$
\left\|-\nabla p_{m}+f\right\|_{H-1}{ }^{2}(\Omega)^{n} \longrightarrow \alpha=\inf \|-\nabla p+f\|_{H-1(\Omega)^{n}}^{2}
$$

$$
\Longrightarrow
$$

$$
\begin{gathered}
\Longrightarrow\left\|-\nabla p_{m}\right\|_{H^{-1}(\Omega)^{n}} \text { is bounded } \Longrightarrow-\nabla p_{m} \rightharpoonup F \quad \text { weak convergence } \\
\left\langle-\nabla p_{m}, v\right\rangle \rightharpoonup\langle F, v\rangle \\
\left\{\left\langle-\nabla p_{m}, v\right\rangle\right\}
\end{gathered}
$$

is bunded \Longrightarrow

$$
\begin{gathered}
\left\langle-\nabla p_{m}, v\right\rangle=\left\langle p_{m}, \nabla \cdot v\right\rangle \quad \text { by Green's Formula } \\
\left\{\left\langle p_{m}, \nabla \cdot v\right\rangle\right\} \quad \text { is bounded for each } \quad v \in H_{0}^{1}(\Omega) . \\
\Longrightarrow\left\{\left\langle p_{m}, w\right\rangle\right\} \quad \text { is bounded for each } \quad w \in L_{0}^{2}(\Omega)
\end{gathered}
$$

By the uniform boundedness principle, $\left\{p_{m}\right\}$ is uniformly bounded in $L_{0}^{2}(\Omega)$.so,

$$
\begin{gathered}
p_{m} \rightharpoonup p_{0} \quad \text { (subsequace) } \\
-\nabla p_{m} \rightharpoonup-\nabla p_{0}
\end{gathered}
$$

claim:
$\left\|-\nabla p_{0}+f\right\|_{H^{-1}(\Omega)^{n}}^{2}=\alpha$, indeed;
$\left\|-\nabla p_{0}+f\right\|_{H^{-1}(\Omega)^{n}}^{2}=\left\langle-\nabla p_{0}+f,-\nabla p_{0}+f\right\rangle=\underline{\lim _{m \rightarrow \infty}}\left\langle-\nabla p_{0}+f,-\nabla p_{0}+f\right\rangle \leq \underline{\lim _{m \rightarrow \infty}}\left\|-\nabla p_{0}+f\right\|_{H^{-1}(\Omega)^{n}}\left\|-\nabla p_{m}+f\right\|_{H}$ \Longrightarrow

$$
\left\|-\nabla p_{0}+f\right\|_{H^{-1}(\Omega)^{n}} \leq \sqrt{\alpha} \Longrightarrow\left\|-\nabla p_{0}+f\right\|_{H^{-1}(\Omega)^{n}}^{2} \leq \alpha \Longrightarrow\left\|-\nabla p_{0}+f\right\|_{H^{-1}(\Omega)^{n}}^{2}=\alpha
$$

26 Lecture 26

Mosolev Problem

$$
\begin{array}{llll}
V=H_{0}^{1}(\Omega) & V^{*}=H^{-1}(\Omega) & Y=L^{1}(\Omega)^{n} & Y^{*}=L^{\infty}(\Omega)^{n} \\
A=\nabla & A^{*}=-\operatorname{div} & f \in V^{*} \text { given } & \alpha, \beta>0
\end{array}
$$

Before we state the problem, we should verify that $A: V \longrightarrow Y$ is continuous. Indeed,

$$
A: H_{0}^{1}(\Omega) \longrightarrow L^{2}(\Omega)^{n}
$$

is so. When Ω is finite we have $L^{2}(\Omega) \subset L^{1}(\Omega)$ and from Hölder inequality we have

$$
\begin{aligned}
\int|f| & \leq \sqrt{\int|f|^{2}} \sqrt{\int 1} \\
\int|f| & \leq C \sqrt{\int|f|^{2}} \\
\|f\|_{1} & \leq C\|f\|_{2} \\
\therefore\|\nabla u\|_{1} & \leq\|\nabla u\|_{2} \\
& \leq k\|u\|_{H_{0}^{1}(\Omega)}
\end{aligned}
$$

So $A: V \longrightarrow Y$ is continuous. The primal problem is

$$
\inf _{u \in V} \frac{\alpha}{2}\|u\|_{V}^{2}+\beta\|\nabla u\|_{Y}-\langle f, u\rangle\left(=\inf _{u \in V}\left\{\int \frac{\alpha}{2}|\nabla u|^{2}+\beta \int|\nabla u|-\int f u\right\}\right)
$$

Now, let

$$
\begin{aligned}
F(u) & =\frac{\alpha}{2}\|u\|_{V}^{2}-\langle f, u\rangle \\
F^{*}\left(u^{*}\right) & =\frac{1}{2 \alpha}\left\|u^{*}+f\right\|_{V^{*}}^{2} \\
G(p) & =\beta\|p\|_{Y}
\end{aligned}
$$

To find G^{*}, let $f(x)=\beta|x| \quad\left(x \in \mathbb{R}^{n}\right)$. Then

$$
f^{*}(y)=\sup _{x \in \mathbb{R}^{n}} x \cdot y-\beta|x|
$$

Now let $h(x)=x \cdot y-\beta|x|$, then

$$
\begin{aligned}
& h^{\prime}(x)=y-\beta \frac{x}{|x|}, \quad|x|=\sqrt{x_{1}^{2}+x_{2}^{2}+\cdots x_{n}^{2}} \\
& h^{\prime}(x)=0 \Rightarrow y=\beta \frac{x}{|x|} \Rightarrow|y|=\beta \\
& x \cdot y-\beta|x|=x \cdot y-|y||x| \leq|y||x|-|y||x|=0 \\
& x=0 \quad \text { or } \quad x=\gamma y
\end{aligned}
$$

So if $|y|=\beta, x=\gamma y$ then $f^{*}(y)=0$. If $|y| \neq \beta$ we do not have critical points case 1: $|y|<\beta$

$$
x y-\beta|x| \leq|x||y|-\beta|x|=|x|(|y| \beta)<0
$$

in this case $f^{*}(y)=0$ as well.
case 2: $|y|>\beta$
$\overline{\text { Take } x}=\lambda y, \quad \lambda>0$

$$
x y-\beta|x|=\lambda|y|^{2}-\beta \lambda|y|=\lambda|y|(|y|-\beta)>0
$$

so

$$
f^{*}(y)= \begin{cases}0, & |y| \leq \beta \\ \infty, & \text { otherwise }\end{cases}
$$

and we have

$$
G^{*}\left(p^{*}\right)=\left\{\begin{array}{ll}
0, & \left|p^{*}(x)\right| \leq \beta \text { a.e on } \Omega \\
\infty, & \text { otherwise }
\end{array}= \begin{cases}0, & \left\|p^{*}(x)\right\|_{\infty} \leq \beta \\
\infty, & \text { otherwise }\end{cases}\right.
$$

The dual problem

$$
\sup _{p^{*} \in Y^{*}}-F^{*}\left(A^{*} p^{*}\right)-G^{*}\left(p^{*}\right)=\sup _{\left\|p^{*}(x)\right\|_{\infty} \leq \beta}-\frac{1}{2 \alpha}\left\|-\nabla \cdot p^{*}+f\right\|_{V^{*}}^{2}
$$

This problem has solutions; because $\left\|-\nabla p^{*}+f\right\|_{V^{*}}^{2}$ is convex over a bounded closed convex set $\left\|p^{*}(x)\right\|_{\infty} \leq \beta$. Extremality conditions

$$
\begin{array}{lll}
F(\bar{u})^{2} & +F^{*}\left(A^{*} \bar{p}^{*}\right) & =\left\langle A^{*} \bar{p}^{*}+f, \bar{u}\right\rangle \\
\frac{\alpha}{2}\|\bar{u}\|_{V}^{2} & +\frac{1}{2 \alpha}\left\|A^{*} p^{*}+f\right\|_{V^{*}}^{2} & =\left\langle A^{*} \bar{p}^{*}+f, \bar{u}\right\rangle \\
\|-\alpha \Delta \bar{u}\|_{V^{*}}^{2} & +\|-\|^{-} \cdot \bar{p}^{*}+f \|_{V^{*}}^{2} & =2\left\langle-\nabla \cdot \bar{p}^{*}+f,-\alpha \Delta \bar{u}\right\rangle \\
-\alpha \Delta \bar{u} & +\nabla \cdot \bar{p}^{*} & =f
\end{array}
$$

27 Lecture 27

Mossolov's problem (another method of dualization).
The given Problem is
$\inf _{u \in H_{0}^{1}(\Omega)}\left(\frac{\alpha}{2}\|u\|_{H_{0}^{1}(\Omega)}^{2}+\beta\|\nabla u\|_{L^{1}(\Omega)^{n}}-\langle f, u\rangle\right)$ with the following assupmtions:
$V=H_{0}^{1}(\Omega), \quad Y=L^{2}(\Omega)^{n}, \quad V^{*}=H_{0}^{-1}(\Omega), \quad Y^{*}=Y$,
$A=\nabla, \quad A^{*}=-\div \quad$ where $\alpha, \beta \nsupseteq 0$

Note that in the previous lecture this Mossolov's problem was solved with a choice of F and G . Here in this lecture the choice of F and G is different. i.e (another method of dualization).
Now, let $F(u)=-\langle f, u\rangle$.
Then

$$
F^{*}\left(u^{*}\right)= \begin{cases}0 & \text { if } u^{*}=-f \\ \infty & \text { other wise }\end{cases}
$$

This is done before. (see previous lectures)
$G(p)=\frac{\alpha}{2}\|p\|_{L^{2}(\Omega)^{n}}^{2}+\beta\|p\|_{L^{1}(\Omega)^{n}}=\int_{\Omega}\left(\frac{\alpha}{2}|p|^{2}+\beta|p|\right) d x$
we want to find: $G^{*}\left(p^{*}\right)$. To do so we first start with the following lemma.

Lemma:

Let $g(x)=\frac{\alpha}{2}|x|^{2}+\beta|x|$ where $g: R^{n} \rightarrow R$, then

$$
g^{*}\left(y^{*}\right)=\frac{1}{2 \alpha}\left(\left|y^{*}\right|-\beta\right)_{+}^{2} \quad \text { where } \mathbf{S}_{+}= \begin{cases}s & \text { if } s \geq 0 \\ 0 & \text { other wise }\end{cases}
$$

and the sup is attained at $\bar{x}=\frac{y}{\alpha|y|}(|y|-\beta)_{+}$

Proof:

$\overline{\text { Let } f(x)}=x \cdot y-\frac{\alpha}{2}|x|^{2}-\beta|x| \quad$ (note that $f: R^{n} \rightarrow R$ and f^{\prime} is the $\operatorname{grad}(\nabla)$)
then $f^{\prime \prime}(x)=y-\alpha x-\beta \frac{x}{|x|}$
By setting $f^{\prime}(x)=0$ we get: $y=\alpha x+\beta \frac{x}{|x|}=\left(\alpha+\frac{\beta}{|x|}\right) x$
We want to solve for (x). To do so, multply (1) by x then by y (note: multiplying here means dot product). Multiplying by x gives:

$$
x \cdot y=\alpha|x|^{2}+\beta|x|=(\alpha|x|+\beta)|x|
$$

Multiplying by y gives:

$$
\begin{aligned}
|y|^{2}= & \left(\alpha+\frac{\beta}{|x|}\right) x \cdot y \\
& \left.=\left(\alpha+\frac{\beta}{|x|}\right)(\alpha|x|+\beta)|x|\right) \\
& =(\alpha|x|+\beta)^{2} \\
\Rightarrow \quad|y|= & (\alpha|x|+\beta) \\
\Rightarrow \quad|x| & =\frac{1}{\alpha}(|y|-\beta)
\end{aligned}
$$

This requires that $|y| \geq \beta$. Otherewise there are no critical points.
Assume now that $|y| \geq \beta$.
From (1)

$$
\begin{aligned}
y & =\left(\alpha+\frac{\beta}{\left.\left.\frac{1}{\alpha}| | y \right\rvert\,-\beta\right)}\right) x \\
& =\left(\alpha+\frac{\alpha \beta}{||y|-\beta)} x\right. \\
& =\frac{\alpha|y|}{|y|-\beta} x \quad \Rightarrow x=\frac{y}{\alpha|y|}(|y|-\beta) \quad \text { and } \\
f_{\max } & =(\alpha|x|+\beta)|x|-\frac{\alpha}{2}|x|^{2}-\beta|x|
\end{aligned}
$$

$$
=\frac{\alpha}{2}|x|^{2}=\frac{1}{2 \alpha}(|y|-\beta)^{2}
$$

Note here that for $|y| \npreceq \beta$, there is no critical values and $f_{\max }=0$ since

$$
\begin{aligned}
& x \cdot y-\frac{\alpha}{2}|x|^{2}-\beta|x| \leq|x||y|-\frac{\alpha}{2}|x|^{2}-\beta|x| \\
& \leq-\frac{\alpha}{2}|x|^{2} \\
& \leq 0
\end{aligned}
$$

Therefore:

$$
f_{\max }=\frac{1}{2 \alpha}(|y|-\beta)_{+}^{2} \quad \text { and occurs when } \bar{x}=\frac{y}{\alpha|y|}(|y|-\beta)_{+}
$$

So,

$$
G^{*}\left(p^{*}\right)=\frac{1}{2 \alpha} \int_{\Omega}\left(\left|p^{*}\right|-\beta\right)_{+}^{2} d x=\frac{1}{2 \alpha}\left(\| \| p^{*} \mid-\beta\right)_{+} \|_{L^{2}(\Omega)^{n}}^{2} \text { and }
$$

the Dual Problem would be:

$$
\begin{aligned}
P^{*} & : \sup _{p^{*} \in Y^{*}}-F\left(A^{*} p^{*}\right)-G^{*}\left(-p^{*}\right) \\
& =\sup _{A^{*} p^{*}=-f} \frac{1}{2 \alpha}\left(\|\left|p^{*}\right|-\beta\right)_{+} \|_{L^{2}(\Omega)^{n}}^{2}
\end{aligned}
$$

note that $A^{*} p^{*}=-f$ is closed and convex set
and also $\left.\|\left|p^{*}\right|-\beta\right)_{+} \|_{L^{2}(\Omega)^{n}}^{2}$ is continouos, coercive, strictly convex which all implies that P^{*} has a unique solution.
***The clear relation between P and P^{*} can be found by using the extramility condition. The relation is given as: $\nabla \bar{u}=\frac{-\bar{p}^{*}}{\alpha\left|\bar{p}^{*}\right|}\left(\left|p^{*}\right|-\beta\right)_{+}$and the justification is left as an exercise.
end of lec\#27

28 Lecture 28

Duality by the Minimax Theorem

Saddle points of a function: Properties
Proposition 58
If $L: A \times B \rightarrow R$,

$$
\inf _{u \in A} \sup _{p \in B} L(u, p) \geq \sup _{p \in B} \inf _{u \in A} L(u, p)
$$

Proof.

$$
L(v, p) \geq \inf _{u \in A} L(u, p) \quad \forall v \in A, \forall p \in B,
$$

then

$$
\sup _{p \in B} L(v, p) \geq \sup _{p \in B} \inf _{u \in A} L(u, p),
$$

then we have

$$
\inf _{u \in A} \sup _{p \in B} L(u, p) \geq \sup _{p \in B} \inf _{u \in A} L(u, p) .
$$

DEFINITION 59

a point $(\bar{u}, \bar{p}) \in A \times B$ is called a saddle point of L on $A \times B$ if

$$
L(\bar{u}, p) \leq L(\bar{u}, \bar{p}) \leq L(u, \bar{p}), \quad \forall u \in A, \forall p \in B
$$

Proposition 60
if $\exists \alpha \in R$ s.t.

$$
L(\bar{u}, p) \leq \alpha \quad \forall p \in B
$$

and

$$
L(u, \bar{p}) \geq \alpha \quad \forall u \in A
$$

then (\bar{u}, \bar{p}) is a saddle point of L and

$$
L(\bar{u}, \bar{p})=\alpha
$$

Proof.

$$
L(u, \bar{p}) \geq \alpha \quad \forall u \in A
$$

\Longrightarrow

$$
L(\bar{u}, \bar{p}) \geq \alpha
$$

and

$$
L(\bar{u}, p) \leq \alpha \forall p \in B
$$

then

$$
L(\bar{u}, \bar{p}) \leq \alpha
$$

then we have

$$
L(\bar{u}, \bar{p})=\alpha
$$

PROPOSITION 61

1) if $(\bar{u}, \bar{p}) \in A \times B$ is a saddle point of L,then

$$
L(\bar{u}, \bar{p})=\max _{p \in B} \min _{u \in A} L(u, p)=\operatorname{minmax}_{u \in A} L(u, p)
$$

2)

$$
\text { If } \max _{p \in B} \inf _{u \in A} L(u, p)=\min _{u \in A} \operatorname{mup}_{p \in B} L(u, p)=\alpha,
$$

then L has a saddle point $(\bar{u}, \bar{p}) \in A \times B$ and $L(\bar{u}, \bar{p})=\alpha$.

Proof. 1) suppose ($\bar{u}, \bar{p})$ is a saddle point of L,then

$$
\begin{gathered}
L(\bar{u}, \bar{p}) \leq L(u, \bar{p}) \Longrightarrow \\
L(\bar{u}, \bar{p})=\inf _{u \in A} L(u, \bar{p})=\min _{u \in A} L(u, \bar{p}) \leq \operatorname{supmin}_{p \in B^{u}} L(u, p),
\end{gathered}
$$

and

$$
\begin{gathered}
L(\bar{u}, \bar{p}) \geq L(\bar{u}, p) \Longrightarrow \\
L(\bar{u}, \bar{p})=\sup _{p \in B} L(\bar{u}, p)=\max _{p \in B} L(\bar{u}, p) \geq \inf _{u \in A} \max _{p \in B} L(u, p),
\end{gathered}
$$

since, inf and sup are attained we have:

$$
\begin{aligned}
\inf _{u \in A} \max _{p \in B} L(u, p) & =\max _{p \in B} L(\bar{u}, p)=L(\bar{u}, \bar{p}) \\
& =\min _{u \in A} L(u, \bar{p})=\sup _{p \in B} \min _{u \in A} L(u, p)
\end{aligned}
$$

\Longrightarrow

$$
L(\bar{u}, \bar{p})=\operatorname{maxmin}_{p \in B} L(u, p)=\min _{u \in A} \max _{p \in B} L(u, p)
$$

2) Assume

$$
\max _{p \in B} \inf _{u \in A} L(u, p)=\min _{u \in A} \sup _{p \in B} L(u, p)=\alpha
$$

we have,

$$
\alpha=\inf _{u \in A} L(u, \bar{p}) \leq L(u, \bar{p}), \quad \forall u \in A
$$

and

$$
=\sup _{p \in B} L(\bar{u}, p) \geq L(\bar{u}, p), \quad \forall p \in B
$$

then L has saddle point.

Proposition 62

the set of saddle points of L on $A \times B$ is of the form $A_{o} \times B_{o}$.
Proof. We need to show that if $\left(u_{1}, p_{1}\right)$ and $\left(u_{2}, p_{2}\right) \in A \times B$ are saddle points then $\left(u_{1}, p_{2}\right)$ is saddle point. we know that

$$
L\left(u_{1}, p_{1}\right)=L\left(u_{2}, p_{2}\right)=\alpha
$$

now,

$$
\begin{aligned}
& L\left(u_{1}, p_{2}\right) \leq \alpha, \text { and } \\
& L\left(u_{1}, p_{2}\right) \geq \alpha,
\end{aligned}
$$

then we have $\left(u_{1}, p_{2}\right)$ is saddle point.
Assumptions on L :
Assume V, Z are reflexive Banach spaces,and

$$
\begin{array}{ll}
A \subseteq V & \text { is closed, convex and non empty, } \\
B \subseteq Z & \text { is closed, convex and non empty, }
\end{array}
$$

the function L satisfies:
for each $u \in A, L(u,$.$) is concave, u.s.c. on \mathrm{B}$, for each $p \in B, L(., p)$ is convex, l.s.c. on A .

Proposition 63

Under the above assumptions, the set $A_{o} \times B_{o}$ is convex.if $L(u,$.$) is strictly concave, then B_{o}$ contains at most one element. if $L(., p)$ is strictly convex, then A_{o} contains at most one element.

Proof. Assume $A_{o} \times B_{o} \neq \Phi$, and let $\left(u_{1}, p_{1}\right),\left(u_{2}, p_{2}\right) \in A_{o} \times B_{o}, \lambda \in[0,1]$.

$$
\begin{aligned}
& L\left(\lambda\left(u_{1}, p_{1}\right)+(1-\lambda)\left(u_{2}, p_{2}\right)\right) \\
= & L\left(\lambda u_{1}+(1-\lambda) u_{2}, \lambda p_{1}+(1-\lambda) p_{2}\right) \\
\leq & \lambda L\left(u_{1}, \lambda p_{1}+(1-\lambda) p_{2}\right)+(1-\lambda) L\left(u_{2}, \lambda p_{1}+(1-\lambda) p_{2}\right) \\
\leq & \lambda L\left(u_{1}, p_{1}\right)+(1-\lambda) L\left(u_{2}, p_{2}\right)=\alpha
\end{aligned}
$$

If $L(u,$.$) is strictly concave, let u \in A_{o}, p_{1}, p_{2} \in B_{o}, \lambda \in(0,1)$, we have

$$
\begin{aligned}
\alpha & =L\left(u, \lambda p_{1}+(1-\lambda) p_{2}\right)>\lambda L\left(u, p_{1}\right)+(1-\lambda) L\left(u, p_{2}\right) \\
& =\lambda \alpha+(1-\lambda) \alpha=\alpha
\end{aligned}
$$

which is impossible $(\alpha>\alpha)$. Similarly If $L(., p)$ is strictly convex, let $u_{1}, u_{2} \in A_{o}, p_{1} \in B_{o}, \lambda \in(0,1)$, we have

$$
\alpha=L\left(u_{1}+(1-\lambda) u_{2}, p_{1}\right)<\lambda L\left(u_{1}, p_{1}\right)+(1-\lambda) L\left(u_{2}, p_{1}\right)=\alpha
$$

Characterization of a saddle point (differentiable functions)

Proposition 64

Assume $L=l+m$, where

$$
\begin{aligned}
& l(u, .) \text { is concave, Gateaux-diff. w.r.t. } p, \\
& l(., p) \text { is convex, Gateaux-diff. w.r.t. } u, \\
& m(u, .) \text { is concave, } \\
& m(., p) \text { is convex, }
\end{aligned}
$$

then $(\bar{u}, \bar{p}) \in A \times B$ is a saddle point of L if and only if

$$
\begin{aligned}
\left\langle\frac{\partial l}{\partial u}(\bar{u}, \bar{p}), u-\bar{u}\right\rangle+m(u, \bar{p})-m(\bar{u}, \bar{p}) & \geq 0, \forall u \in A \\
\left\langle\frac{\partial l}{\partial p}(\bar{u}, \bar{p}), p-\bar{p}\right\rangle+m(\bar{u}, p)-m(\bar{u}, \bar{p}) & \leq 0, \forall p \in B
\end{aligned}
$$

Proof. Assume (\bar{u}, \bar{p}) is a saddle point, $\lambda \in(0,1]$

$$
\begin{aligned}
& \frac{1}{\lambda}[L(\bar{u}+\lambda(u-\bar{u}), \bar{p})-L(\bar{u}, \bar{p})] \\
= & \frac{1}{\lambda}[l(\bar{u}+\lambda(u-\bar{u}), \bar{p})-l(\bar{u}, \bar{p})+m(\bar{u}+\lambda(u-\bar{u}), \bar{p})-m(\bar{u}, \bar{p})] \geq 0,
\end{aligned}
$$

therefore

$$
\begin{aligned}
\frac{l(\bar{u}+\lambda(u-\bar{u}), \bar{p})-l(\bar{u}, \bar{p})}{\lambda}+\frac{m(\bar{u}+\lambda(u-\bar{u}), \bar{p})-m(\bar{u}, \bar{p})}{\lambda} & \geq 0 \\
\frac{l(\bar{u}+\lambda(u-\bar{u}), \bar{p})-l(\bar{u}, \bar{p})}{\lambda}+\frac{\lambda m(u, \bar{p})+(1-\lambda) m(\bar{u}, \bar{p})-m(\bar{u}, \bar{p})}{\lambda} & \geq 0
\end{aligned}
$$

cancelling and taking the limits as $\lambda \longrightarrow 0$, we get

$$
\left\langle\frac{\partial l}{\partial u}(\bar{u}, \bar{p}), u-\bar{u}\right\rangle+m(u, \bar{p})-m(\bar{u}, \bar{p}) \geq 0, \forall u \in A,
$$

the proof of the second one is analogous.
on the other hand assume the inequalities hold, let $u \in A, \lambda \in(0,1)$,

$$
\begin{aligned}
l(\bar{u}+\lambda(u-\bar{u}), \bar{p})-l(\bar{u}, \bar{p}) & \leq \lambda l(u, \bar{p})+(1-\lambda) l(\bar{u}, \bar{p})-l(\bar{u}, \bar{p}) \\
& =\lambda[l(u, \bar{p})-l(\bar{u}, \bar{p})]
\end{aligned}
$$

now,

$$
\begin{aligned}
L(u, \bar{p})-L(\bar{u}, \bar{p}) & =l(u, \bar{p})-l(\bar{u}, \bar{p})+m(u, \bar{p})-m(\bar{u}, \bar{p}) \\
& \geq \frac{l(\bar{u}+\lambda(u-\bar{u}), \bar{p})-l(\bar{u}, \bar{p})}{\lambda}+m(u, \bar{p})-m(\bar{u}, \bar{p}) \geq 0
\end{aligned}
$$

then we have

$$
L(u, \bar{p}) \geq L(\bar{u}, \bar{p})
$$

in the same way, we could prove that

$$
L(\bar{u}, \bar{p}) \geq L(\bar{u}, p),
$$

so, (\bar{u}, \bar{p}) is a saddle point.

Corollary 65

Assume $L(u,$.$) is concave, cateaux-differentiabe and L(., p)$ is convex, cateaux-differentiabe, then (\bar{u}, \bar{p}) is a saddle point of L on $A \times B$ if and only if

$$
\begin{aligned}
\left\langle\frac{\partial L}{\partial u}(\bar{u}, \bar{p}), u-\bar{u}\right\rangle & \geq 0, \forall u \in A, \\
\left\langle\frac{\partial L}{\partial p}(\bar{u}, \bar{p}), p-\bar{p}\right\rangle & \leq 0, \forall p \in B .
\end{aligned}
$$

Proof. Let $m=0$.

29 Lecture 29

Existence of Saddle points

Proposition 1

Assume V, Y are reflexive Banach spaces. $A \subset V, B \subset Y$ are convex, closed and nonempty. $L: A \times B \longrightarrow \mathbb{R}$.
(1) $L(u$, .) is concave and upper semicontinuous for each $u \in A$
(2) $L(., p)$ is convex and lower semicontinuous for each $p \in B$.
(3) If A and B are bounded, then L possesses at least one saddle point $(\bar{u}, \bar{p}) \in A \times B$ such that

$$
L(\bar{u}, \bar{p})=\underset{p \in B}{\operatorname{Max}} \underset{u \in A}{\operatorname{Min}} L(u, p)=\underset{u \in A}{\operatorname{Min}} \operatorname{Max} L(u, p)
$$

Proposition 2
If insted of (3) we have
(4)
a) there exists a $p_{0} \in B$ such that $L\left(u, p_{0}\right) \longrightarrow \infty$ as $\|u\| \longrightarrow \infty, u \in A$
b) there exists a $u_{0} \in A$ such that $L\left(u_{0}, p\right) \longrightarrow-\infty$ as $\|p\| \longrightarrow \infty, p \in B$,
then L possesses at least one saddle point $(\bar{u}, \bar{p}) \in A \times B$ such that

$$
L(\bar{u}, \bar{p})=\operatorname{Min}_{u \in A} \operatorname{Sup}_{p \in B} L(u, p)=\underset{p \in B}{\operatorname{Max}} \inf L(u, p)
$$

Proposition 3
if instead of (3) we have A is either finite or 4(a) holds, then

$$
\operatorname{Min}_{u \in A} \operatorname{Sup}_{p \in B} L(u, p)=\sup _{p \in B u \in A} \inf _{x} L(u, p)
$$

Proposition 4
if instead of (3) we have B is either finite or 4(b) holds, then

$$
\inf _{u \in A} \operatorname{Sup} L(u, p)=\operatorname{Max}_{p \in B}^{\operatorname{Max}} \inf _{u \in A} L(u, p)
$$

Application to Duality
(P) $\inf _{u \in V} F(u)$ or $\inf _{u \in \operatorname{domF}} F(u)$
we try to write

$$
F(u)=\sup _{p \in B} L(u, p)
$$

the Primal problem becomes

$$
\inf _{u \in A} \operatorname{Sup}_{p \in B} L(u, p)
$$

How? we cosider two cases
Case (1) : $F(u)=F_{0}(u)+F_{1}(u)$ with $F_{1}(u)$ proper, lower semicontinuous and convex $\left(F_{1} \in \Gamma_{0}(V)\right)$

$$
\begin{gathered}
\stackrel{* *}{F_{1}}(u)=F_{1}(u)=\sup _{u^{*} \in *}^{V}\left\langle u, u^{*}\right\rangle-\stackrel{*}{F_{1}}(\stackrel{*}{u}) \\
L(u, p)=\langle u, p\rangle-\stackrel{*}{F_{1}}(p)+F_{0}(u) \\
F(u)=\sup _{p \in \tilde{V}}\langle u, p\rangle-\stackrel{*}{F_{1}}(p)+F_{0}(u)
\end{gathered}
$$

The primal problem becomes

$$
\inf _{u \in A} \sup _{p \in \stackrel{*}{V}}\left\{\langle u, p\rangle-\stackrel{*}{F}_{1}(p)+F_{0}(u)\right\}
$$

Case (2) : F $(u)=F_{0}(u)+F_{1}(S u)$ with $S: V \longrightarrow Y(\stackrel{*}{Y}=Z) S$ can be nonlinear, $F_{1} \in \Gamma_{0}(V)$

$$
\begin{gathered}
F_{1}(S u)=\sup _{p \in Z}\langle S u, p\rangle-\stackrel{*}{F}_{1}(p) \\
\langle S u, p\rangle-\stackrel{*}{F}_{1}(p)+F_{0}(u)
\end{gathered}
$$

The primal problem becomes

$$
\inf _{u \in V} \sup _{p \in Z} L(u, p)
$$

Example: The Mossolev Problem

$$
\begin{gathered}
\inf _{u \in H_{0}^{1}(\Omega)} \frac{\alpha}{2}\|\nabla u\|_{L^{2}(\Omega)^{n}}^{2}+\beta\|\nabla u\|_{L^{1}(\Omega)^{n}}-\langle f, u\rangle \\
F(u)=\int_{\Omega}\left(\frac{\alpha}{2}|\nabla u|^{2}+\beta|\nabla u|-f u\right) d x \\
S=-\nabla \\
F_{1}(p)=\int_{\Omega}\left(\frac{\alpha}{2}|p|^{2}+\beta|p|\right) d x \\
L(u, p)=\int_{\Omega}\left(-p \cdot \nabla u-\frac{1}{2 \alpha}(|p|-\beta)_{+}^{2}-f u\right) d x
\end{gathered}
$$

the primal problem (P)

$$
\inf _{u \in H_{0}^{1}(\Omega)} \sup _{p \in L^{2}(\Omega)^{n}} \int_{\Omega}\left(-p . \nabla u-\frac{1}{2 \alpha}(|p|-\beta)_{+}^{2}-f u\right) d x
$$

the dual problem $(\stackrel{*}{P})$

$$
\sup _{p \in L^{2}(\Omega)^{n}} \inf _{u \in H_{0}^{1}(\Omega)} \int_{\Omega}\left(-p \cdot \nabla u-\frac{1}{2 \alpha}(|p|-\beta)_{+}^{2}-f u\right) d x
$$

(P)

$$
\inf _{u \in H_{0}^{1}(\Omega)} \int_{\Omega}(u \operatorname{div} p-f u) d x=\inf _{u \in H_{0}^{1}(\Omega)} \int_{\Omega}(\operatorname{div} p-f) u d x=\left\{\begin{array}{lr}
0 & \operatorname{div} p-f=0 \\
-\infty & \text { other wise }
\end{array}\right.
$$

$(\stackrel{*}{P})$ is

$$
\sup _{\substack{p \in L^{2}(\Omega)^{n} \\ \operatorname{div} p=f}}-\frac{1}{2 \alpha} \int_{\Omega}(|p|-\beta)_{+}^{2} d x
$$

Extremality

$$
L(\bar{u}, \bar{p})=\inf _{u \in V} \sup _{p \in Z} L(u, p)=\sup _{p \in Z^{u} \in V} \inf L(u, p)
$$

$$
\Longrightarrow
$$

$$
\begin{gathered}
\int_{\Omega}-\bar{p} \nabla \bar{u}-\frac{1}{2 \alpha}(|\bar{p}|-\beta)_{+}^{2}-f \bar{u} d x=\int_{\Omega}\left(\frac{\alpha}{2}|\nabla \bar{u}|^{2}+\beta|\nabla \bar{u}|-f \bar{u}\right) d x \\
\int_{\Omega}\left(-\bar{p} \nabla \bar{u}-\frac{1}{2 \alpha}(|\bar{p}|-\beta)_{+}^{2}-\frac{\alpha}{2}|\nabla \bar{u}|^{2}-\beta|\nabla \bar{u}|\right) d x=0 \\
-\bar{p} \nabla \bar{u}-\frac{1}{2 \alpha}(|\bar{p}|-\beta)_{+}^{2}-\frac{\alpha}{2}|\nabla \bar{u}|^{2}-\beta|\nabla \bar{u}|=0 \\
\nabla \bar{u}=\frac{-\bar{p}}{\alpha|\bar{p}|}(|\bar{p}|-\beta)_{+} \\
\operatorname{div} \bar{p}=f
\end{gathered}
$$

[^0]: ${ }^{1} \mathrm{~A}$ normed space is lcs

[^1]: ${ }^{3}$ For any topological space X, the Borel sigma algebra of X is the σ-algebra \mathcal{B} generated by the open sets of X. In other words, the Borel sigma algebra is equal to the intersection of all sigma algebras \mathcal{A} of X having the property that every open set of X is an element of \mathcal{A}. An element of \mathcal{B} is called a Borel subset of X, or a Borel set.
 ${ }^{4}$ Given $\epsilon>0, \exists \delta>0$ such that for all $u, v \in L^{p}(\Omega, E)$ we have

