
0.1 Subdifferentials

In this section X will denote a Banach space, X∗ its dual and h·, ·i the pairing
between the elements of X∗ and those of X. Monotone operators play the role
of increasing or dicreasing functions from R to R.

Definition 1 An opreator T : X → X∗ is called monotone if

hTx− Ty, x− yi ≥ 0,

strictly monotone if
hTx− Ty, x− yi > 0,

and strongly monotone if

hTx− Ty, x− yi ≥ α kx− yk2

for some α > 0 and all x, y ∈ X.

Definition 2 The graph of a multivalued operator T : X → 2X
∗
is defined to

be
G (T ) = {(x, ξ) : x ∈ X, ξ ∈ Tx} .

Definition 3 A multivalued operator T : X → 2X
∗
is called monotone if

hξ − η, x− yi ≥ 0,
strictly monotone if

hξ − η, x− yi > 0,
and strongly monotone if

hξ − η, x− yi ≥ α kx− yk2

for some α > 0, all x, y ∈ X and all ξ ∈ Tx, η ∈ Ty.

Definition 4 T : X → 2X
∗
is called maximal monotone if it is monotone and

has no proper extension to a monotone operator. In other words, if S : X → 2X
∗

is a monotone operator such that G (S) ⊇ G (T ) then G (S) = G (T ) .

Definition 5 An operator F : X → R is called subdifferentiable at x ∈ X if it
has a linear minorant at F (x) . In other words, if there exists a ξ ∈ X∗ such
that

hξ, y − xi ≤ F (y)− F (x) ∀y ∈ X

The set of all such ξ is calle the subdifferential of F at x and is denoted by
∂F (x) . If F does not have a subdifferential at x then ∂F (x) = φ.

Roughly speaking, the subdifferential is the set of all "slopes" of lines that
can be drawn supporting the epigraph of the operator F at the point (x, F (x)) .
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Proposition 6 ∂F (x) is convex and w∗-closed.

Proof. Let ξ, η ∈ ∂F (x) , α ∈ [0, 1] , then
hαξ + (1− α) η, y − xi = α hξ, y − xi+ (1− α) hη, y − xi

≤ α (F (y)− F (x)) + (1− α) (F (y)− F (x))

= F (y)− F (x)

hence, αξ+(1− α) η ∈ ∂F (x) . To show the w∗-closedness, let ξn ∈ ∂F (x) such

that ξn
w∗−→ ξ, then, for all y ∈ X,

hξn, y − xi ≤ F (y)− F (x)

and hence,
hξ, y − xi ≤ F (y)− F (x) ,

i.e., ξ ∈ ∂F (x) .

Proposition 7 ∂F (·) is a monotone operator

Proof. Suppose ξ ∈ ∂F (x) and η ∈ ∂F (y) , then

hξ, y − xi+ F (x) ≤ F (y) ,

hη, x− yi+ F (y) ≤ F (x)

The second inequality can be rearranged as

h−η, y − xi− F (x) ≤ −F (y)

which, when added to the first inequality yeilds

hξ − η, y − xi ≤ 0

or
hξ − η, x− yi ≥ 0.

In the proof of the following proposition we will need the following version
of the Hahn-Banach Theorem.

Theorem 8 Let Y be a real locally convex space, A,B be two nonempty convex
sets in Y such that A is open and A ∩ B = φ. Then there exists a closed
hyperplane M that separates A and B. In other words, there exist ξ ∈ Y ∗ and
β ∈ R such that hξ, yi+ β > 0 for all y ∈ A, hξ, yi+ β = 0 for all y ∈ M and
hξ, yi+ β ≤ 0 for all y ∈ B.

Proposition 9 Suppose F : X → R is convex, x ∈ dom(F ) and F is continu-
ous at x then ∂F (x) 6= φ.
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Proof. The idea is to obtain a hyperplane M that supports the epigraph of
F. Since F is continuous at x, there exists an open set O such that x ∈ O
and F is bounded above, say by c < ∞ on O. Notice that O ⊂dom(F ) and
O× (c,∞) ⊂ epi (F )

◦ and thus epi (F )◦ 6= φ. epi (F )◦ is convex since F is
convex. Also, (x, F (x)) /∈ epi (F )◦ . Hence, by the Hahn-Banach Theorem,
there exists a closed hyperplaneM in X×R that supports epi (F )◦ and contains
(x, F (x)) . The equation of M can be written as hξ, yi+mr + β = 0 for some
ξ ∈ X∗, m, β ∈ R (not all zeros) and all (y, r) ∈M. Furthermore,

hξ, yi+mr + β > 0 (1)

for all (y, r) ∈ epi (F )◦ and
hξ, xi+mF (x) + β = 0.

Hence, β = − hξ, xi−mF (x) and (1) becomes

hξ, y − xi+m (r − F (x)) > 0 ∀ (y, r) ∈ epi (F )◦ . (2)

If m = 0 we get hξ, y − xi > 0 for all y ∈ O (inparticular). Since O is open,
then ξ = 0 and β = 0, which is a contradiction. Hence, we may assume withour
loss of generality that m > 0. In this case, (2) may be rearranged as¿

− ξ

m
, y − x

À
+ F (x) < r ∀ (y, r) ∈ epi (F )◦ .

Therefore, ¿
− ξ

m
, y − x

À
+ F (x) ≤ r ∀ (y, r) ∈ epi (F )

and, in particular ¿
− ξ

m
, y − x

À
+ F (x) ≤ F (y) .

Thus, − ξ
m ∈ ∂F (x) .

Exercise 10 If F : X → R is convex then F (x+ th)−F (x) ≤ t (F (x+ h)− F (x))
for sufficiently small t > 0.

Exercise 11 If F : X → R is convex then

F (x+ th)− F (x)

t

is increasing as a function of t. Hence, it has a limit as t→ 0+ (which may be
±∞).
Exercise 12 Denote the limit in the previous exercise by d (x;h) . Then for any
h ∈ X

F (x) + λd (x;h) ≤ F (x+ λh) ∀λ ∈ R.
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Exercise 13 Let x, y ∈ X and

L = {x+ λy : λ ∈ R} .
If Π : hξ, ui+ β = 0 is a hyperplane such that hξ, ui+ β ≥ 0 for all u ∈ L, then
hξ, ui+ β = 0 for all u ∈ L. In other words, if a hyperplane contains a straight
line on one side then it must actually contain the line in it.

0.2 Relationship to the Gateaux Derivative

Notice that from the definitions of the Gateaux derivative and the subdifferen-
tials, the F is assumed to be finite at the point of evaluation x. This will also
be the case with convex functions.

Proposition 14 Suppose F : X → R is convex. If F has a Gateaux derivative
at x ∈ domF, then ∂F (x) = {F 0 (x)} . Conversely, if F is continuous at x ∈ X
and has a unique subdifferential {ξ} at x, then F is Gateaux differentiable at x
and F 0 (x) = ξ.

Proof. Suppose F has a Gateaux derivative at x ∈ X. we will show that
F 0 (x) ∈ ∂F (x) .

hF 0 (x) , thi = F (x+ th)− F (x) + o (t) .

Thus, for sufficiently small t > 0, we have, using Exercise 10,

hF 0 (x) , hi ≤ F (x+ h)− F (x) +
o (t)

t
.

Taking the limit as t→ 0+ we get

hF 0 (x) , hi ≤ F (x+ h)− F (x) ,

i.e., F 0 (x) ∈ ∂F (x) . On the other hand, suppose ξ ∈ ∂F (x) , then

hξ, thi+ F (x) ≤ F (x+ th)

= hF 0 (x) , thi+ o (t) .

For t > 0 we get

hξ, hi ≤ hF 0 (x) , hi+ o (t)

t

which gives
hξ, hi ≤ hF 0 (x) , hi .

For t < 0 we get

hξ, hi ≥ hF 0 (x) , hi+ o (t)

t

which gives
hξ, hi ≥ hF 0 (x) , hi .
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Combining the two inequalities gives

hξ, hi = hF 0 (x) , hi .
Hence ξ = F 0 (x) .
To show the converse, observe first that, for sufficiently small t > 0,

hξ, thi ≤ F (x+ th)− F (x) ≤ t (F (x+ h)− F (x)) .

Therefore,

hξ, hi ≤ F (x+ th)− F (x)

t
≤ F (x+ h)− F (x)

and, because F is continuous at x, it follows that d (x;h) is finite. Next observe
that from Exercise 12, for sufficiently small h ∈ X

F (x) + λd (x;h) ≤ F (x+ λh) ∀λ ∈ R.
Geometrically, this means that the line

L = {(x, F (x)) + λ (h, d (x;h)) : λ ∈ R}

in X×R does not intersect (epiF )◦ . Since the latter set is not empty we get by
the Hahn-Banach therorem, the existemce of a hyperplane Π :hη, yi+mr+β = 0
that seperates (epiF )◦ and L. By Exercise 13, Π contains L. i.e.,

hη, x+ λhi+m (F (x) + λd (x;h)) + β = 0 ∀λ ∈ R.

It follows that m 6= 0 and d (x;h) =
D

η
−m , h

E
. i.e.,

d (x;h) = lim
t→0+

F (x+ th)− F (x)

t

is a continuous linear functional on X. Hence, d (x;h) = F 0 (x) . From the
uniqueness of the subdifferential of F , we get F 0 (x) = ξ.

Exercise 15 Give a direct proof that the operator d (x;h) is linear and contin-
uous.

In terms of the Gateaux derivative, a convex function is charachterized as
follows

Proposition 16 Suppose F is defined on the convex set A ⊂X inot R. If F is
Gateaux differentiable on A then the following are equivalent

1. F is convex

2. F (y) ≥ F (x) + hF 0 (x) , y − xi for all x, y ∈ A.
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Proof. 1. =⇒ 2. is clear from the previous proposition since the Gateaux
derivative is a subdifferentiable. To show the converse, rewrite the inequality
with x replaced with αx+ (1− α) y, then

F (y) ≥ F (αx+ (1− α) y) + hF 0 (αx+ (1− α) y) , α (y − x)i
and similarly

F (x) ≥ F (αx+ (1− α) y) + hF 0 (αx+ (1− α) y) , (1− α) (x− y)i .
Multiplying the first inequality by (1− α) and the second by α and adding we
get

(1− α)F (y) + αF (x) ≥ F (αx+ (1− α) y) .

i.e., F is convex.
In terms of the monotonicity of the Gateaux derivative, the convexity of a

function F is characterized as follows

Proposition 17 Suppose F is defined on the convex set A ⊂X inot R. If F is
Gateaux differentiable on A then the following are equivalent

1. F is convex

2. F 0 (x) is monotone on A.
Proof. If F is convex then its Gateaux derivative is a subdifferential and we
saw before (Porposition 7) that the subdifferential is a monotone operator. On
the other hand, suppose F 0 (x) is monotone on A.The function

ϕ (λ) = F (x+ λ (y − x)) , λ ∈ [0, 1] .
is differentiable and

ϕ0 (λ) = hF 0 (x+ λ (y − x)) , y − xi .
If λ1 ≤ λ2 then

hF 0 (x+ λ2 (y − x))− F 0 (x+ λ1 (y − x)) , (λ2 − λ1) y − xi ≥ 0,
which implies that

hF 0 (x+ λ2 (y − x))− F 0 (x+ λ1 (y − x)) , y − xi ≥ 0,
i.e.,

ϕ0 (λ2)− ϕ0 (λ1) ≥ 0.
Hence, ϕ0 (·) is increasing. Therefore, ϕ (·) is convex (see exercise below) and

ϕ (λ) ≤ (1− λ)ϕ (0) + λϕ (1) .

i.e.,
F (x+ λ (y − x)) ≤ (1− λ)F (x) + λF (y) .

Exercise 18 If ϕ0 : I → R is increasing, then ϕ is convex.
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